Skip to main content

Some Parameters and Properties of Biomass Fuels

  • Chapter
  • First Online:
Fundamentals of Biofuels Engineering and Technology

Part of the book series: Green Energy and Technology ((GREEN))

  • 1013 Accesses

Abstract

The main parameters of some kinds of biomass feedstock are given here as reference to simple energy balances where they can be utilized. The chapter presents data from diverse sources and starts by giving the properties of biomass in terms of its physical parameters. The evaluation of the calorific values (treated more extensively in the first part of this manuscript) is followed by data on the proximate and ultimate analysis of diverse kinds of biomass. The main parameters required for an overall energy balance are given, and this is followed by proximate and ultimate analysis numbers for different species. In addition, data related to agrofuels are given with the related air requirements for its combustion, and this is followed by combustion properties of peat, minor agrofuels, and related. The section continues with some tables where several data on the parameters, composition, and combustion properties for different types of biomass are given. Notions of stoichiometry are provided at the end of the chapter.

Life is movement.

(Aristotle, 4th century BC), as cited by Brügemann and Gerds-Ploeger (2013).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Álvarez-Álvarez, P., Pizarro, C., Barrio-Anta, M., Cámara-Obregón, A., Bueno, J., Álvarez, A., et al. (2018). Evaluation of tree species for biomass energy production in northwest Spain. Forests, 9, 160. https://doi.org/10.3390/f9040160.

    Article  Google Scholar 

  • Arce, M., Saavedra, Á., Míguez, J., Granada, E., Cacabelos, A., Arce, M. E., et al. (2013). Biomass fuel and combustion conditions selection in a fixed bed combustor. Energies, 6, 5973–5989. https://doi.org/10.3390/en6115973.

    Article  Google Scholar 

  • Bahadori, A., Zahedi, G., Zendehboudi, S., & Jamili, A. (2014). Estimation of the effect of biomass moisture content on the direct combustion of sugarcane bagasse in boilers. International Journal of Sustainable Energy, 33, 349–356. https://doi.org/10.1080/14786451.2012.748766.

    Article  Google Scholar 

  • Bartok, W., & Sarofim, A. F. (1991). Fossil fuel combustion: A source book (1st ed.). Wiley-Interscience.

    Google Scholar 

  • Borman, G. L., & Ragland, K. W. (1998). Combustion engineering. McGraw-Hill.

    Google Scholar 

  • Brügemann, J., & Gerds-Ploeger, H. (2013). Life is movement (Aristotle, 4th century BC). Netherlands Heart Journal, 21(10), 427–428. https://doi.org/10.1007/s12471-013-0468-x.

    Article  Google Scholar 

  • Bushnell, D. J., Haluzok, C., & Dadkhah-Nikoo, A. (1990). Biomass fuel characterization : Testing and evaluating the combustion characteristics of selected biomass fuels. Final Report May 1, 1988–July, 1989 (No. DOE/BP-1363). Portland, OR (USA): USDOE Bonneville Power Administration; Corvallis, OR (USA): Oregon State Univ. Dept. of Mechanical Engineering. https://doi.org/10.2172/6910422.

  • Channiwala, S. A., & Parikh, P. P. (2002). A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel, 81, 1051–1063. https://doi.org/10.1016/S0016-2361(01)00131-4.

    Article  Google Scholar 

  • Chimonyo, V. G. P., Modi, A. T., & Mabhaudhi, T. (2018). Sorghum radiation use efficiency and biomass partitioning in intercrop systems. South African Journal of Botany, 118, 76–84. https://doi.org/10.1016/j.sajb.2018.06.009.

    Article  Google Scholar 

  • Clarke, D., & Rieley, J. (2010). Strategy for responsible peatland management. Saarijärvi: International Peat Society.

    Google Scholar 

  • De Blasio, C., Lucca, G., Özdenkci, K., Mulas, M., Lundqvist, K., Koskinen, J., et al. (2015). A study on supercritical water gasification of black liquor conducted in stainless steel and nickel-chromium-molybdenum reactors. Journal of Chemical Technology and Biotechnology, 91(10), 2664–2678. https://doi.org/10.1002/jctb.4871.

    Article  Google Scholar 

  • Demirbaş, A. (2005). Estimating of structural composition of wood and non-wood biomass samples. Energy Sources, 27, 761–767. https://doi.org/10.1080/00908310490450971.

    Article  Google Scholar 

  • ECN, The Netherlands. (2018). Phyllis2—Database for biomass and waste (WWW Document). https://www.ecn.nl/phyllis2/. Accessed August 22, 2018.

  • Energy Efficiency & Renewable Energy Department, USA. (2018). Bioenergy Technologies Office|Department of Energy (WWW Document). https://www.energy.gov/eere/bioenergy. Accessed August 22, 2018.

  • Gholz, H. L. (1982). Environmental limits on aboveground net primary production, leaf area, and biomass in vegetation zones of the Pacific northwest. Ecology, 63, 469–481. https://doi.org/10.2307/1938964.

    Article  Google Scholar 

  • Gujarat Pollution Control Board, Paryavaran Bhavan. (2014). Pollution control guidelines for conversion of boilers/utilities from natural gas to solid fuels (coal, lignite, agro fuels etc).

    Google Scholar 

  • Jankowski, K. J., Dubis, B., Budzyński, W. S., Bórawski, P., & Bułkowska, K. (2016). Energy efficiency of crops grown for biogas production in a large-scale farm in Poland. Energy, 109, 277–286. https://doi.org/10.1016/j.energy.2016.04.087.

    Article  Google Scholar 

  • Jenkins, B. (1993). Properties of biomass. In Biomass energy fundamentals (EPRI Report).

    Google Scholar 

  • Jenkins, B. M., Baxter, L. L., Miles, T. R., Jr., & Miles, T. (1998). Combustion properties of biomass. Fuel Processing Technology, 54, 17–46.

    Article  Google Scholar 

  • Jezierska-Thöle, A., Rudnicki, R., & Kluba, M. (2016). Development of energy crops cultivation for biomass production in Poland. Renewable and Sustainable Energy Reviews, 62, 534–545. https://doi.org/10.1016/j.rser.2016.05.024.

    Article  Google Scholar 

  • Ksenzhek, O. S., & Volkov, A. G. (1998). Plant energetics. San Diego, California: Academic Press.

    Google Scholar 

  • Lau, F. S., Roberts, M. J., Rue, D. M., Punwani, D. V., Wen, W. -W., & Johnson, P. B. (1987). Peat beneficiation by wet carbonization. International Journal of Coal Geology, 8, 111–121. https://doi.org/10.1016/0166-5162(87)90026-7.

    Article  Google Scholar 

  • Liu, K., Xie, W., Li, D., Pan, W. -P., Riley, J. T., & Riga, A. (2000). The effect of chlorine and sulfur on the composition of ash deposits in a fluidized bed combustion system. Energy Fuels, 14, 963–972. https://doi.org/10.1021/ef990197k.

    Article  Google Scholar 

  • Manickam, I. N., Ravindran, D. D., & Subramanian, D. P. (2006). Biomass densification methods and mechanism. Cogeneration and Distributed Generation Journal, 21, 33–45. https://doi.org/10.1080/15453660609509098.

    Article  Google Scholar 

  • Minkkinen, K., Korhonen, R., Savolainen, I., & Laine, J. (2002). Carbon balance and radiative forcing of Finnish peatlands 1900–2100—The impact of forestry drainage. Global Change Biology, 8, 785–799. https://doi.org/10.1046/j.1365-2486.2002.00504.x.

    Article  Google Scholar 

  • Motta, I. L., Miranda, N. T., Maciel Filho, R., & Wolf Maciel, M. R. (2018). Biomass gasification in fluidized beds: A review of biomass moisture content and operating pressure effects. Renewable and Sustainable Energy Reviews, 94, 998–1023. https://doi.org/10.1016/j.rser.2018.06.042.

    Article  Google Scholar 

  • Pessarakli, M. (2005). Handbook of photosynthesis. Boca Raton: CRC Press, Taylor & Francis Group.

    Google Scholar 

  • Rayaprolu, K. (2009). Boilers for power and process. Boca Raton: CRC Press, Taylor & Francis Group.

    Google Scholar 

  • Reed, T. B., & Golden, A. D. (1988). Handbook of biomass downdraft gasifier engine systems.

    Google Scholar 

  • Rumble, J. (2018). CRC handbook of chemistry and physics. CRC Press, Taylor & Francis Group.

    Google Scholar 

  • Saastamoinen, J. (2015). Release profile of volatiles in fluidised bed combustion of biomass. Journal of Fundamentals of Renewable Energy and Applications, 5, 1–12. https://doi.org/10.4172/2090-4541.1000148.

    Article  Google Scholar 

  • Serup, H., Kofman, P. D., Falster, H., Gamborg, C., Gundersen, P., Hansen, L., et al. (2005). Wood for energy production. Dublin: Coford.

    Google Scholar 

  • Song, H., Quinton, K., Peng, Z., Zhao, H., Ladommatos, N., Song, H., et al. (2016). Effects of oxygen content of fuels on combustion and emissions of diesel engines. Energies, 9, 28. https://doi.org/10.3390/en9010028.

    Article  Google Scholar 

  • Tillman, D. (1978). Wood as an energy resource. New York, USA: Academic Press. https://doi.org/10.1016/B978-0-12-691260-9.X5001-0.

  • Turpeinen, T. (2016). Developing biofuels production from food industry wastes in the rural area of Kenya. Savonia: University of Applied Sciences Technology and Transport.

    Google Scholar 

  • Van Loo, S., & Koppejan, J. (2008). The handbook of biomass gasification and co-firing. Earthscan.

    Google Scholar 

  • Vassilev, S. V., Vassileva, C. G., Song, Y. C., Li, W. Y., & Feng, J. (2017). Ash contents and ash-forming elements of biomass and their significance for solid biofuel combustion. Fuel, 208, 377–409. https://doi.org/10.1016/j.fuel.2017.07.036.

    Article  Google Scholar 

  • Virtanen, K., Hänninen, P., Kallinen, R. L., Virtiainen, S., Herranen, T., & Jokisaari, R. (2003). The peat reserves of Finland in 2000. Geological Survey of Finland. Vammalan Kirjapaino Oy.

    Google Scholar 

  • Yang, Y. B., Ryu, C., Khor, A., & Yates, N. (2005). Effect of fuel properties on biomass combustion. Part II. Modelling approach—Identification of the controlling factors. Fuel, 84, 2116–2130. https://doi.org/10.1016/j.fuel.2005.04.023.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cataldo De Blasio .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

De Blasio, C. (2019). Some Parameters and Properties of Biomass Fuels. In: Fundamentals of Biofuels Engineering and Technology. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-11599-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11599-9_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11598-2

  • Online ISBN: 978-3-030-11599-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics