Skip to main content

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

The ever-increasing global energy demand and the risks we face in terms of global warming and pollution suggest the need of alternative sources for energy and fuels. Liquid and gaseous fuels derived from biomass represent a promising alternative in this sense. Biofuels demonstrate positive qualities respect to other fuels types; they can be transported easily and show good calorific properties. Particularly, liquid fuels are very convenient for the human need since they store a reasonable amount of energy in very little volume, and they can be transported easily. Studies have been conducted by several organizations concerning biomass supply and its usage in energy conversion, and they are reported in this section.

Give me a lever and I will move the Earth.

Sentence generally attributed to Archimedes of Syracuse, Sicily. 287–212 BC. The author of the: On the Equilibrium of Planes and father of the first laws of mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bacastow, R. B., Keeling, C. D., & Whorf, T. P. (1985). Seasonal amplitude increase in atmospheric CO2 concentration at Mauna Loa, Hawaii, 1959–1982. Journal of Geophysical Research: Atmospheres, 90(D6), 10529–10540. https://doi.org/10.1029/JD090iD06p10529.

    Article  Google Scholar 

  • Battjes, J. J. (1994). Global options for biofuels from plantations according to IMAGE simulations (No. IVEM-SR-77). Rijksuniversiteit Groningen (Netherlands). Interfacultaire Vakgroep Energie en Milieukunde. Retrieved from http://inis.iaea.org/Search/search.aspx?orig_q=RN:26031212.

  • Box, E. O. (1988). Estimating the seasonal carbon source-sink geography of a natural, steady-state terrestrial biosphere. Journal of Applied Meteorology, 27(10), 1109–1124. https://doi.org/10.1175/1520-0450(1988)027%3c1109:ETSCSS%3e2.0.CO;2.

    Article  Google Scholar 

  • Breure, A. M., Lijzen, J. P. A., & Maring, L. (2018). Soil and land management in a circular economy. Science of the Total Environment, 624, 1125–1130. https://doi.org/10.1016/j.scitotenv.2017.12.137.

    Article  Google Scholar 

  • Campbell, C. J., & Laherrere, J. (1998). The end of cheap oil. Scientific American, 278(3). Retrieved from https://www.jstor.org/stable/26057679.

  • D’Arrigo, R., Jacoby, G. C., & Fung, I. Y. (1987). Boreal forests and atmosphere–biosphere exchange of carbon dioxide. Nature, 329(6137), 321–323. https://doi.org/10.1038/329321a0.

    Article  Google Scholar 

  • De Blasio, C., Ahlbeck, J., & Westerlund, T. (2009). Modeling the hydrodynamics and mass-transfer phenomena for sedimentary rocks used for flue gas desulfurization. The effect of temperature. In R. M. de Brito Alves, C. A. O. do Nascimento, & E. C. Biscaia (Eds.), Computer aided chemical engineering (Vol. 27, pp. 411–416). Elsevier. https://doi.org/10.1016/S1570-7946(09)70289-5.

    Google Scholar 

  • De Blasio, C., Carletti, C., Westerlund, T., & Järvinen, M. (2013). On modeling the dissolution of sedimentary rocks in acidic environments. An overview of selected mathematical methods with presentation of a case study. Journal of Mathematical Chemistry, 51(8), 2120–2143. https://doi.org/10.1007/s10910-013-0202-3.

    Article  MathSciNet  Google Scholar 

  • Dessus, B., Devin, B., & Pharabod, F. (1992). World potential of renewable energies actually accessible in the nineties and environmental impacts analysis. Houille Blanche, 47(1), 21–70.

    Article  Google Scholar 

  • Edmonds, J. A., Wise, M. A., Sands, R., Brown, R., & Kheshgi, H. (2003). Agriculture, land use, and commercial biomass energy: A preliminary integrated analysis of the potential role of biomass energy for reducing future greenhouse related emissions. In Proceedings of the 6th Greenhouse Gas Control Technologies Conference (pp. 0-08-044045–2). Oxford UK: Elsevier Inc.

    Google Scholar 

  • Fischer, G., & Schrattenholzer, L. (2001). Global bioenergy potentials through 2050. Biomass and Bioenergy, 20(3), 151–159. https://doi.org/10.1016/S0961-9534(00)00074-X.

    Article  Google Scholar 

  • Fung, I. Y., Tucker, C. J., & Prentice, K. C. (1987). Application of advanced very high resolution radiometer vegetation index to study atmosphere-biosphere exchange of CO2. Journal of Geophysical Research: Atmospheres, 92(D3), 2999–3015. https://doi.org/10.1029/JD092iD03p02999.

    Article  Google Scholar 

  • Grubler, A., Jefferson, M., & Nakicenovic, N. (1996). Global energy perspectives: A summary of the joint study by IIASA and world energy council (Monograph). Retrieved July 9, 2018, from http://pure.iiasa.ac.at/id/eprint/4860/.

  • Hall, D. O. (1993). Biomass for energy: Supply prospects. In Renewable energy: Sources for fuels and electricity (pp. 593–651). Washington D.C.: Island Press.

    Google Scholar 

  • Houghton, R. A., & Woodwell, G. M. (1989). Global climatic change. Scientific American, 260(4), 36–47.

    Article  Google Scholar 

  • Johansson, T. B. (1993). A renewables-intensive global energy scenario. In Renewable energy: Sources for fuels and electricity (pp. 1071–1143). Washington D.C.: Island Press.

    Google Scholar 

  • Lashof, D. A., & Tirpak, D. A. (1990). Policy options for stabilizing global climate. U.S.: Environmental Protection Agency.

    Google Scholar 

  • Lazarus, M., Greber, L., Hall, J., Bartels, C., Bernow, S., Hansen, E., … Von Hippel, D. (1993). Towards a fossil free energy future. The next energy transition. Stockholm Environment Institute Boston Center.

    Google Scholar 

  • Leemans, R., van Amstel, A., Battjes, C., Kreileman, E., & Toet, S. (1996). The land cover and carbon cycle consequences of large-scale utilizations of biomass as an energy source. Global Environmental Change, 6(4), 335–357. https://doi.org/10.1016/S0959-3780(96)00028-3.

    Article  Google Scholar 

  • Mascarelli, A. L. (2009). Gold rush for algae. Nature, 461(7263), 460–461. https://doi.org/10.1038/461460a.

    Article  Google Scholar 

  • Millero, F. J. (1979). The thermodynamics of the carbonate system in seawater. Geochimica et Cosmochimica Acta, 43(10), 1651–1661. https://doi.org/10.1016/0016-7037(79)90184-4.

    Article  Google Scholar 

  • Nakicenovic, N., & Riahi, K. (2001). An assessment of technological change across selected energy scenarios (Monograph). Retrieved July 9, 2018, from http://pure.iiasa.ac.at/id/eprint/6521/.

  • Nakicenovic, N., Alcamo, J., Grubler, A., Riahi, K., Roehrl, R. A., Rogner, H.-H., & Victor, N. (2000). Special report on emissions scenarios (SRES), a special report of working group III of the intergovernmental panel on climate change. Cambridge: Cambridge University Press. Retrieved from http://pure.iiasa.ac.at/id/eprint/6101/.

  • Schulze, E.-D., Körner, C., Law, B. E., Haberl, H., & Luyssaert, S. (2012). Large-scale bioenergy from additional harvest of forest biomass is neither sustainable nor greenhouse gas neutral. GCB Bioenergy, 4, 611–616. https://doi.org/10.1111/j.1757-1707.2012.01169.x.

    Article  Google Scholar 

  • Shell. (1995). Evolution of the world’s energy system 1860–2060. London: Shell Center.

    Google Scholar 

  • Sillén, L. G., & Martell, A. E. (1965). Stability constants of metal-ion complexes (Sillen, Lars Gunnar; Martell, Arthur E.). Journal of Chemical Education, 42(9), 521. https://doi.org/10.1021/ed042p521.1.

    Article  Google Scholar 

  • Soerensen, B., Meibom, P., & Kuemmel, B. (1999). Long-term scenarios for global energy demand and supply. Four global greenhouse mitigation scenarios. Final Report (No. IMFUFA-TEKST--359). Roskilde Universitetscenter (Denmark): Inst. for Studiet af Matematik og Fysik samt deres Funktioner i Undervisning. Retrieved from http://inis.iaea.org/Search/search.aspx?orig_q=RN:30029769.

  • Statista. (2018). World—Total population 2007–2017 | statistic. Retrieved December 31, 2018, from https://www.statista.com/statistics/805044/total-population-worldwide/.

  • Swisher, J. (1993). Renewable energy potentials, Chap. 3. Energy, 18(5), 437–459. https://doi.org/10.1016/0360-5442(93)90022-6.

  • Thomas, W. H., Seibert, D. L. R., Alden, M., Neori, A., & Eldridge, P. (1984). Yields, photosynthetic efficiencies and proximate composition of dense marine microalgal cultures. I. Introduction and Phaeodactylum tricornutum experiments. Biomass, 5(3), 181–209. https://doi.org/10.1016/0144-4565(84)90022-2.

    Article  Google Scholar 

  • U.S. Energy Information Administration. (2013). International energy outlook 2013. Retrieved from http://www.eia.gov/forecasts/ieo/.

  • Williams, R. H. (1995). Variants of a low CO2-emitting energy supply system (LESS) for the world. Prepared for the IPCC Second Assessment Report Working Group IIa, Energy Supply Mitigation Options.

    Google Scholar 

  • World Energy Council. (1994). New renewable energy resources. Kogan Page Ltd.

    Google Scholar 

  • Yamamoto, H., Yamaji, K., & Fujino, J. (1999). Evaluation of bioenergy resources with a global land use and energy model formulated with SD technique. Applied Energy, 63(2), 101–113. https://doi.org/10.1016/S0306-2619(99)00020-3.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cataldo De Blasio .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

De Blasio, C. (2019). Introduction. In: Fundamentals of Biofuels Engineering and Technology. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-11599-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11599-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11598-2

  • Online ISBN: 978-3-030-11599-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics