Skip to main content

Lipid Bilayers and Liposomes on Microfluidics Realm: Techniques and Applications

  • Chapter
  • First Online:

Abstract

Liposomes and lipid bilayer systems are one of the most ubiquitous structures in the living world, with complex structural features and a variety of biological functions in a constrained milieu. Redesigning and reprogramming these structures as biomimicking components will enable us to investigate basic biophysical and pharmacological processes within intra- and extracellular environments. Microfluidics, an enabling and disruptive technology, have greatly attracted this field by presenting unique capabilities, such as reduction in fluidic volumes, automation, and high-throughput, which have not been introduced with other technologies. In this chapter, a broad perspective and a variety of applications of microfluidic-associated methods were reviewed comprehensively.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. P. Walde, K. Cosentino, H. Engel, P. Stano, Giant vesicles: Preparations and applications. Chembiochem 11(7), 848 (2010)

    Article  CAS  Google Scholar 

  2. D.D. Lasic, The mechanism of vesicle formation. Biochem. J. 256(1), 1–11 (Nov. 1988)

    Article  CAS  Google Scholar 

  3. D. Van Swaay, A. Demello, Microfluidic methods for forming liposomes. Lab Chip 13(5), 752 (2013)

    Article  Google Scholar 

  4. D. Carugo, E. Bottaro, J. Owen, E. Stride, C. Nastruzzi, Liposome production by microfluidics: Potential and limiting factors. Sci. Rep. 6, 25876 (2016)

    Article  CAS  Google Scholar 

  5. P. Taylor, C. Xu, P.D.I. Fletcher, V.N. Paunov, A novel technique for preparation of monodisperse giant liposomes. Chem. Commun. 14, 1732 (2003)

    Article  Google Scholar 

  6. P. Taylor, C. Xu, P.D.I. Fletcher, V.N. Paunov, Fabrication of 2D arrays of giant liposomes on solid substrates by microcontact printing. Phys. Chem. Chem. Phys. 5, 4918 (2003)

    Article  CAS  Google Scholar 

  7. K. Kuribayashi, G. Tresset, P. Coquet, H. Fujita, S. Takeuchi, Electroformation of giant liposomes in microfluidic channels. Meas. Sci. Technol. 17, 3121 (2006)

    Article  CAS  Google Scholar 

  8. M. Le Berre, A. Yamada, L. Reck, Y. Chen, D. Baigl, Electroformation of giant phospholipid vesicles on a silicon substrate: Advantages of controllable surface properties. Langmuir 24(6), 2643 (2008)

    Article  Google Scholar 

  9. S. Aimon, J. Manzi, D. Schmidt, J.A.P. Larrosa, P. Bassereau, G.E.S. Toombes, Functional reconstitution of a voltage-gated potassium channel in giant unilamellar vesicles. PLoS One 6, e25529 (2011)

    Article  CAS  Google Scholar 

  10. V. Pereno et al., Electroformation of giant unilamellar vesicles on stainless steel electrodes. ACS Omega 2, 994 (2017)

    Article  CAS  Google Scholar 

  11. Y.C. Lin, K.S. Huang, J.T. Chiang, C.H. Yang, T.H. Lai, Manipulating self-assembled phospholipid microtubes using microfluidic technology. Sensors Actuators B Chem. 117, 464 (2006)

    Article  CAS  Google Scholar 

  12. F. Liu et al., The exosome total isolation chip. ACS Nano 11, 10712 (2017)

    Article  CAS  Google Scholar 

  13. L.G. Liang et al., An integrated double-filtration microfluidic device for detection of extracellular vesicles from urine for bladder cancer diagnosis. Methods Mol. Biol. 1660, 355 (2017)

    Article  CAS  Google Scholar 

  14. L.G. Liang et al., An integrated double-filtration microfluidic device for isolation, enrichment and quantification of urinary extracellular vesicles for detection of bladder cancer. Sci. Rep. 7, 46224 (2017)

    Article  Google Scholar 

  15. A. Jahn, W.N. Vreeland, M. Gaitan, L.E. Locascio, Controlled vesicle self-assembly in microfluidic channels with hydrodynamic focusing. J. Am. Chem. Soc. 126, 2674 (2004)

    Article  CAS  Google Scholar 

  16. K. Funakoshi, H. Suzuki, S. Takeuchi, Lipid bilayer formation by contacting monolayers in a microfluidic device for membrane protein analysis. Anal. Chem. 78, 8169 (2006)

    Article  CAS  Google Scholar 

  17. P. Jönsson, M.P. Jonsson, F. Höök, Sealing of submicrometer wells by a shear-driven lipid bilayer. Nano Lett. 10, 1900 (2010)

    Article  Google Scholar 

  18. N. Malmstadt, M.A. Nash, R.F. Purnell, J.J. Schmidt, Automated formation of lipid-bilayer membranes in a microfluidic device. Nano Lett. 6, 1961 (2006)

    Article  CAS  Google Scholar 

  19. B. Schlicht, M. Zagnoni, Droplet-interface-bilayer assays in microfluidic passive networks. Sci. Rep. 5, 9951 (2015)

    Article  CAS  Google Scholar 

  20. S. Ota, H. Suzuki, S. Takeuchi, Microfluidic lipid membrane formation on microchamber arrays. Lab Chip 11, 2485 (2011)

    Article  CAS  Google Scholar 

  21. T. Osaki, S. Yoshizawa, R. Kawano, H. Sasaki, S. Takeuchi, Lipid-coated microdroplet array for in vitro protein synthesis. Anal. Chem. 83, 3186 (2011)

    Article  CAS  Google Scholar 

  22. J.C. Stachowiak, D.L. Richmond, T.H. Li, A.P. Liu, S.H. Parekh, D.A. Fletcher, Unilamellar vesicle formation and encapsulation by microfluidic jetting. Proc. Natl. Acad. Sci. 105, 4697 (2008)

    Article  CAS  Google Scholar 

  23. S.R. Kirchner et al., Membrane composition of jetted lipid vesicles: A Raman spectroscopy study. J. Biophotonics 5, 40 (2012)

    Article  CAS  Google Scholar 

  24. K. Kamiya, R. Kawano, T. Osaki, K. Akiyoshi, S. Takeuchi, Cell-sized asymmetric lipid vesicles facilitate the investigation of asymmetric membranes. Nat. Chem. 8, 881 (2016)

    Article  CAS  Google Scholar 

  25. R.K. Shah et al., Designer emulsions using microfluidics. Mater. Today 11, 18 (2008)

    Article  CAS  Google Scholar 

  26. E. Lorenceau, A.S. Utada, D.R. Link, G. Cristobal, M. Joanicot, D.A. Weitz, Generation of polymerosomes from double-emulsions. Langmuir 21, 9183 (2005)

    Article  CAS  Google Scholar 

  27. Y.C. Tan, K. Hettiarachchi, M. Siu, Y.R. Pan, A.P. Lee, Controlled microfluidic encapsulation of cells, proteins, and microbeads in lipid vesicles. J. Am. Chem. Soc. 128, 5656 (2006)

    Article  CAS  Google Scholar 

  28. L. Kam, S.G. Boxer, Formation of supported lipid bilayer composition arrays by controlled mixing and surface capture [19]. J.Am. Chem. Soc. 122, 12901 (2000)

    Article  CAS  Google Scholar 

  29. Y.-H.M. Chan, P. Lenz, S.G. Boxer, Kinetics of DNA-mediated docking reactions between vesicles tethered to supported lipid bilayers. Proc. Natl. Acad. Sci. 104, 18913 (2007)

    Article  CAS  Google Scholar 

  30. A. Ainla, I. Gözen, B. Hakonen, A. Jesorka, Lab on a Biomembrane: Rapid prototyping and manipulation of 2D fluidic lipid bilayers circuits. Sci. Rep. 3, 2743 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatih Inci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Inci, F. (2019). Lipid Bilayers and Liposomes on Microfluidics Realm: Techniques and Applications. In: Kök, F., Arslan Yildiz, A., Inci, F. (eds) Biomimetic Lipid Membranes: Fundamentals, Applications, and Commercialization. Springer, Cham. https://doi.org/10.1007/978-3-030-11596-8_9

Download citation

Publish with us

Policies and ethics