Skip to main content

Abstract

The mechanisms that take place in or through cell membranes are vitally important for all living organisms. The molecules embedded in or associated to membranes, such as transmembrane proteins, behave dynamically to perform their functions. Although experimental techniques have improved considerably in recent decades, when combined with computational means of modeling, they reveal secrets behind the mechanisms related to membrane systems. The resolution of the structures of membrane proteins has become trivial recently using computerized prediction tools. The worldwide accumulation of structural data in databases enables the application of in-silico methodologies. Simulations, together with the various lipid membrane models, provide information through the dynamic exploration of conformational space. In this chapter, the basics of modeling are discussed, with a focus on molecular dynamic modeling methodology. In addition to modeling, visualization and analysis tools are also mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.P. Feynman, The Feynman Lectures on Physics – Vol. III, The Feynman Lectures on Physics (1963)

    Google Scholar 

  2. M. Karplus, Y.Q. Gao, J. Ma, A. Van Der Vaart, W. Yang, A.H. Zewail, Protein structural transitions and their functional role. Philos. Trans. Math. Phys. Eng. Sci. Ser. A 363, 331 (2005)

    Article  CAS  Google Scholar 

  3. J. Gumbart, Y. Wang, A. Aksimentiev, E. Tajkhorshid, K. Schulten, Molecular dynamics simulations of proteins in lipid bilayers. Curr. Opin. Struct. Biol 15, 423 (2005)

    Article  CAS  Google Scholar 

  4. P.C. Biggin, P.J. Bond, Molecular dynamics simulations of membrane proteins. Methods Mol Biol 1215, 91–108 (2015)

    Article  CAS  Google Scholar 

  5. E. Lindahl, M.S.P. Sansom, Membrane proteins: molecular dynamics simulations. Curr. Opin. Struct. Biol 18(4), 425–431 (2008)

    Article  CAS  Google Scholar 

  6. G.A. Kaminski, R.A. Friesner, J. Tirado-Rives, W.L. Jorgensen, Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J. Phys. Chem. B 105, 6474 (2001)

    Article  CAS  Google Scholar 

  7. A.D. MacKerell et al., All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102, 3586 (1998)

    Article  CAS  Google Scholar 

  8. C. Oostenbrink, A. Villa, A.E. Mark, W.F. Van Gunsteren, A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force-field parameter sets 53A5 and 53A6. J. Comput. Chem. 25(13), 1656–1676 (2004)

    Article  CAS  Google Scholar 

  9. J. Wang, P. Cieplak, P.A. Kollman, How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J. Comput. Chem 21, 1049 (2000)

    Article  CAS  Google Scholar 

  10. B.J. Alder, T.E. Wainwright, Phase transition for a hard sphere system. J. Chem. Phys. 27(5), 1208–1209 (1957)

    Article  CAS  Google Scholar 

  11. A. Rahman, F.H. Stillinger, Molecular dynamics study of liquid water. J. Chem. Phys 55, 3336 (1971)

    Article  CAS  Google Scholar 

  12. J.A. McCammon, B.R. Gelin, M. Karplus, Dynamics of folded proteins. Nature 267(5612), 585–590 (1977)

    Article  CAS  Google Scholar 

  13. M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Oxford Science Publications) SE - Oxford Science Publications (Oxford University Press, Oxford, 1989)

    Google Scholar 

  14. D. Frenkel, B. Smit, Understanding molecular simulation: from algorithms to applications. Comput. Sci. Ser. 2nd (ed). Academic Press (2002)

    Google Scholar 

  15. W.W. Garvin, Introduction to Linear Programming (1st (ed), McGraw-Hill, London, 1960)

    Google Scholar 

  16. H.B. Callen, Thermodynamics and an Introduction to Thermostatistics (Wiley, New York, 1985)

    Google Scholar 

  17. D. Chandler, Introduction to Modern Statistical Mechanics (Oxford University Press, New York, 1987)

    Google Scholar 

  18. K.A. Dill, Molecular driving forces: Statistical thermodynamics in chemistry and biology. By K. A. Dill, S. Bromberg. Macromol. Chem. Phys. 204(14), 1800–1800 (2003)

    Article  Google Scholar 

  19. W. Sun, Y. Yuan, Optimization Theory and Methods : Nonlinear Programming (Springer, New York, 2006)

    Google Scholar 

  20. E. Schrödinger, Statistical Thermodynamics (Cambridge University Press, London, 1948), p. 95

    Google Scholar 

  21. A. Leach, Molecular modelling: principles and applications. Computers 2nd (ed.), Pearson Education Limited (2001)

    Google Scholar 

  22. V. Aleksa, G.A. Guirgis, A. Horn, P. Klaeboe, R.J. Liberatore, C.J. Nielsen, Vibrational spectra, conformations, quantum chemical calculations and spectral assignments of 1-chloro-1-silacyclohexane. Vib. Spectrosc. 61, 167–175 (2012)

    Article  CAS  Google Scholar 

  23. E. Lindahl, B. Hess, D. van der Spoel, GROMACS 3.0: a package for molecular simulation and trajectory analysis. J. Mol. Model. 7(8), 306–317 (2001)

    Article  CAS  Google Scholar 

  24. J.C. Phillips et al., Scalable molecular dynamics with NAMD. J. Comput. Chem. 26(16), 1781–1802 (2005)

    Article  CAS  Google Scholar 

  25. D.A. Case et al., The Amber biomolecular simulation programs. J. Comput. Chem. 26(16), 1668–1688 (2005)

    Article  CAS  Google Scholar 

  26. P. Eastman et al., OpenMM 7: rapid development of high performance algorithms for molecular dynamics. PLoS Comput Biol 13(7), e1005659 (2017)

    Article  CAS  Google Scholar 

  27. B.R. Brooks, R.E. Bruccoleri, B.D. Olafson, D.J. States, S. Swaminathan, M. Karplus, CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 4(2), 187–217 (1983)

    Article  CAS  Google Scholar 

  28. S.J. Marrink, A.H. de Vries, D.P. Tieleman, Lipids on the move: simulations of membrane pores, domains, stalks and curves. Biochim. Biophys. Acta Biomembr. 1788(1), 149–168 (2009)

    Article  CAS  Google Scholar 

  29. P.J. Stansfeld, M.S.P. Sansom, Molecular simulation approaches to membrane proteins. Structure 19(11), 1562–1572 (2011)

    Article  CAS  Google Scholar 

  30. B. Roux, K. Schulten, Computational studies of membrane channels. Structure 12(8), 1343–1351 (2004)

    Article  CAS  Google Scholar 

  31. J.S. Hub, B.L. De Groot, Mechanism of selectivity in aquaporins and aquaglyceroporins. Proc Natl Acad Sci U S A 105, 1198 (2008)

    Article  CAS  Google Scholar 

  32. J.D. Faraldo-Gómez, L.R. Forrest, Modeling and simulation of ion-coupled and ATP-driven membrane proteins. Curr. Opin. Struct. Biol. 21(2), 173–179 (2011)

    Article  CAS  Google Scholar 

  33. E.B. Watkins, C.E. Miller, J. Majewski, T.L. Kuhl, Membrane texture induced by specific protein binding and receptor clustering: active roles for lipids in cellular function. Proc. Natl. Acad. Sci. 108(17), 6975–6980 (2011)

    Article  CAS  Google Scholar 

  34. S. Lal Badshah, A.N. Khan, Y.N. Mabkhot, Molecular dynamics simulation of cholera toxin A-1 polypeptide. Open Chem 14, 188–196 (2016)

    Article  Google Scholar 

  35. J.J. Blessy, D.J.S. Sharmila, Molecular modeling of methyl-α-Neu5Ac analogues docked against cholera toxin - a molecular dynamics study. Glycoconj. J. 32(1–2), 49–67 (2015)

    Article  CAS  Google Scholar 

  36. R.P. Saha, P. Chakrabarti, Molecular modeling and characterization of Vibrio cholerae transcription regulator HlyU. BMC Struct Biol 6, 24 (2006)

    Article  CAS  Google Scholar 

  37. A. Sridhar, A. Kumar, A.K. Dasmahapatra, Multi-scale molecular dynamics study of cholera pentamer binding to a GM1-phospholipid membrane. J. Mol. Graph. Model. 68, 236–251 (2016)

    Article  CAS  Google Scholar 

  38. K. Geleijns et al., Mannose-binding lectin contributes to the severity of Guillain-Barre syndrome. J. Immunol. 177(6), 4211–4217 (2006)

    Article  CAS  Google Scholar 

  39. S. Kusunoki, D. Morita, S. Ohminami, S. Hitoshi, I. Kanazawa, Binding of immunoglobulin G antibodies in Guillain-Barré syndrome sera to a mixture of GM1 and a phospholipid: possible clinical implications. Muscle Nerve 27(3), 302–306 (2003)

    Article  CAS  Google Scholar 

  40. C.A. Taft, V.B. Da Silva, C.H.T.D.P. Da Silva, Current topics in computer-aided drug design. J. Pharm. Sci. 97(3), 1089–1098 (2008)

    Article  CAS  Google Scholar 

  41. S.J.Y. Macalino, V. Gosu, S. Hong, S. Choi, Role of computer-aided drug design in modern drug discovery. Arch. Pharm. Res. 38(9), 1686–1701 (2015)

    Article  CAS  Google Scholar 

  42. X. Huang, C.-G. Zhan, How dopamine transporter interacts with dopamine: insights from molecular modeling and simulation. Biophys J 93(10), 3627–3639 (2007)

    Article  CAS  Google Scholar 

  43. A.W. Ravna, I. Sylte, S.G. Dahl, Molecular mechanism of citalopram and cocaine interactions with neurotransmitter transporters. J. Pharmacol. Exp. Ther. 307(1), 34–41 (2003)

    Article  CAS  Google Scholar 

  44. H. Remaut, R. Fronzes, Bacterial Membranes_ Structural and Molecular Biology (Caister Academic Press, Norfolk, 2014)

    Google Scholar 

  45. R.G. Ramos, D. Libong, M. Rakotomanga, K. Gaudin, P.M. Loiseau, P. Chaminade, Comparison between charged aerosol detection and light scattering detection for the analysis of Leishmania membrane phospholipids. J. Chromatogr. A 1209(1–2), 88–94 (2008)

    Article  CAS  Google Scholar 

  46. F.J. van Eerden, D.H. de Jong, A.H. de Vries, T.A. Wassenaar, S.J. Marrink, Characterization of thylakoid lipid membranes from cyanobacteria and higher plants by molecular dynamics simulations. Biochim. Biophys. Acta Biomembr. 1848(6), 1319–1330 (2015)

    Article  CAS  Google Scholar 

  47. K. Zhang, S.M. Beverley, Phospholipid and sphingolipid metabolism in Leishmania. Mol Biochem Parasitol 170(2), 55–64 (2010)

    Article  CAS  Google Scholar 

  48. N. Unubol et al., Peptide Antibiotics Developed by Mimicking Natural Antimicrobial Peptides, vol 06 (Clin. Microbiol, Open Access, 2017)

    Google Scholar 

  49. E. Matyus, C. Kandt, D. Tieleman, Computer simulation of antimicrobial peptides. Curr. Med. Chem. 14(26), 2789–2798 (2007)

    Article  CAS  Google Scholar 

  50. A. Liwo, Computational Methods to Study the Structure and Dynamics of Biomolecules and Biomolecular Processes: From Bioinformatics to Molecular Quantum Mechanics (Springer, Berlin/Heidelberg, 2014)

    Book  Google Scholar 

  51. C.P. Fall, Computational Cell Biology (Springer, New York, 2002)

    Google Scholar 

  52. J. Moult, K. Fidelis, A. Kryshtafovych, T. Schwede, A. Tramontano, Critical assessment of methods of protein structure prediction (CASP)—Round XII. Proteins Struct. Funct. Bioinforma 86(August 2017), 7–15 (2018)

    Article  CAS  Google Scholar 

  53. M.G. Wolf, M. Hoefling, C. Aponte-Santamaría, H. Grubmüller, G. Groenhof, g_membed: efficient insertion of a membrane protein into an equilibrated lipid bilayer with minimal perturbation. J. Comput. Chem. 31(11), 2169–2174 (2010)

    Article  CAS  Google Scholar 

  54. A.C. Kalli, B.A. Hall, I.D. Campbell, M.S.P. Sansom, A helix heterodimer in a lipid bilayer: prediction of the structure of an integrin transmembrane domain via multiscale simulations. Structure 19(10), 1477–1484 (2011)

    Article  CAS  Google Scholar 

  55. P.R. Cullis, B. De Kruijff, Lipid polymorphism and the functional roles of lipids in biological membranes. Biochim. Biophys. Acta - Rev. Biomembr. 559(4), 399–420 (1979)

    Article  CAS  Google Scholar 

  56. H.L. Scott, Modeling the lipid component of membranes. Curr. Opin. Struct. Biol. 12(4), 495–502 (2002)

    Article  CAS  Google Scholar 

  57. W.L. Jorgensen, J. Tirado-Rives, The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. J. Am. Chem. Soc. 110(6), 1657–1666 (1988)

    Article  CAS  Google Scholar 

  58. W.L. Jorgensen, D.S. Maxwell, J. Tirado-Rives, Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118(45), 11225–11236 (1996)

    Article  CAS  Google Scholar 

  59. W.D. Cornell et al., A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 117(19), 5179–5197 (1995)

    Article  CAS  Google Scholar 

  60. H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, J. Hermans, Interaction models for water in relation to protein hydration (Springer, Dordrecht, 1981), pp. 331–342

    Google Scholar 

  61. X. Daura, A.E. Mark, W.F. Van Gunsteren, Parametrization of aliphatic CHn united atoms of GROMOS96 force field. J. Comput. Chem. 19(5), 535–547 (1998)

    Article  CAS  Google Scholar 

  62. A. Kukol, Lipid models for united-atom molecular dynamics simulations of proteins. J. Chem. Theory Comput. 5(3), 615–626 (2009)

    Article  CAS  Google Scholar 

  63. S. Jo, T. Kim, W. Im, Automated builder and database of protein/membrane complexes for molecular dynamics simulations. PLoS One 2(9), e880 (2007)

    Article  CAS  Google Scholar 

  64. S. Jo, T. Kim, V.G. Iyer, W. Im, CHARMM-GUI: a web-based graphical user interface for CHARMM. J. Comput. Chem. 29(11), 1859–1865 (2008)

    Article  CAS  Google Scholar 

  65. E.L. Wu et al., CHARMM-GUI membrane builder toward realistic biological membrane simulations. J. Comput. Chem. 35(27), 1997–2004 (2014)

    Article  CAS  Google Scholar 

  66. H.M. Berman et al., The protein data bank. Nucleic Acids Res. 28(1), 235–242 (2000)

    Article  CAS  Google Scholar 

  67. A.L. Lomize, I.D. Pogozheva, M.A. Lomize, H.I. Mosberg, Positioning of proteins in membranes: A computational approach. Protein Sci. 15, 1318–1333 (2006)

    Article  CAS  Google Scholar 

  68. T.H. Schmidt, C. Kandt, LAMBADA and InflateGRO2: efficient membrane alignment and insertion of membrane proteins for molecular dynamics simulations. J. Chem. Inf. Model. 52(10), 2657–2669 (2012)

    Article  CAS  Google Scholar 

  69. W. Humphrey, A. Dalke, K. Schulten, VMD: visual molecular dynamics. J. Mol. Graph 14(1), 33–38. , 27–8. 1996

    Google Scholar 

  70. B. Sommer et al., CELLmicrocosmos 2.2 MembraneEditor: a modular interactive shape-based software approach to solve heterogeneous membrane packing problems. J. Chem. Inf. Model 51(5), 110419120935062 (2011)

    Article  CAS  Google Scholar 

  71. L. Martínez, R. Andrade, E.G. Birgin, J.M. Martínez, PACKMOL: a package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 30(13), 2157–2164 (2009)

    Article  CAS  Google Scholar 

  72. E. Wallin, G. Von Heijne, Genome-Wide Analysis of Integral Membrane Proteins from Eubacterial, Archaean, and Eukaryotic Organisms (Cambridge University Press, USA, 1998)

    Google Scholar 

  73. E.P. Carpenter, K. Beis, A.D. Cameron, S. Iwata, Overcoming the challenges of membrane protein crystallography this review comes from a themed issue on biophysical methods edited by Samar Hasnain and Soichi Wakatsuki. Curr. Opin. Struct. Biol. 18, 581–586 (2008)

    Article  CAS  Google Scholar 

  74. J.P. Overington, B. Al-Lazikani, A.L. Hopkins, How many drug targets are there? Nat. Rev. Drug Discov. 5(12), 993–996 (2006)

    Article  CAS  Google Scholar 

  75. A.S. Robinson, Production of Membrane Proteins : Strategies for Expression and Isolation (Wiley-VCH, Weinheim, 2011)

    Book  Google Scholar 

  76. A. 1969- Kukol, Molecular Modeling of Proteins (Humana Press, New York, 2015)

    Google Scholar 

  77. C. Kandt, W.L. Ash, D. Peter Tieleman, Setting up and running molecular dynamics simulations of membrane proteins. Methods 41(4), 475–488 (2007)

    Article  CAS  Google Scholar 

  78. M.A. Lomize, I.D. Pogozheva, H. Joo, H.I. Mosberg, A.L. Lomize, OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic Acids Res. 40(D1), 370–376 (2012)

    Article  CAS  Google Scholar 

  79. A.L. Lomize, I.D. Pogozheva, M.A. Lomize, H.I. Mosberg, The role of hydrophobic interactions in positioning of peripheral proteins in membranes. BMC Struct. Biol. 7, 1–30 (2007)

    Article  CAS  Google Scholar 

  80. A.L. Lomize, I.D. Pogozheva, H.I. Mosberg, Anisotropic solvent model of the lipid bilayer. 2. Energetics of insertion of small molecules, peptides, and proteins in membranes. J. Chem. Inf. Model. 51(4), 930–946 (2011)

    Article  CAS  Google Scholar 

  81. V.A. Harmandaris, N.P. Adhikari, N.F.A. van der Vegt, K. Kremer, Hierarchical modeling of polystyrene: from atomistic to coarse-grained simulations. Macromolecules 39(19), 6708–6719 (2006)

    Article  CAS  Google Scholar 

  82. M. Praprotnik, L.D. Site, K. Kremer, Multiscale simulation of soft matter: from scale bridging to adaptive resolution. Annu Rev Phys Chem 59, 545–571 (2008)

    Article  CAS  Google Scholar 

  83. C. Peter, K. Kremer, Multiscale simulation of soft matter systems – from the atomistic to the coarse-grained level and back. Soft Matter 5(22), 4357 (2009)

    Article  CAS  Google Scholar 

  84. J.B. Klauda et al., Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types NIH Public Access. J. Phys. Chem. B 114(23), 7830–7843 (2010)

    Article  CAS  Google Scholar 

  85. R.W. Pastor, A.D. Mackerell, Development of the CHARMM force field for lipids NIH public access. J. Phys. Chem. Lett. 2(13), 1526–1532 (2011)

    Article  CAS  Google Scholar 

  86. J.P. Ulmschneider, M.B. Ulmschneider, United atom lipid parameters for combination with the optimized potentials for liquid simulations all-atom force field. J. Chem. Theory Comput. 5(7), 1803–1813 (2009)

    Article  CAS  Google Scholar 

  87. S.W.I. Siu, R. Vácha, P. Jungwirth, R.A. Böckmann, Biomolecular simulations of membranes: Physical properties from different force fields. J. Chem. Phys 128(12), 125103 (2008)

    Article  CAS  Google Scholar 

  88. B.J. Reynwar, G. Illya, V.A. Harmandaris, M.M. Müller, K. Kremer, M. Deserno, Aggregation and vesiculation of membrane proteins by curvature-mediated interactions. Nature 447(7143), 461–464 (2007)

    Article  CAS  Google Scholar 

  89. W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W. Impey, M.L. Klein, Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79(2), 926–935 (1983)

    Article  CAS  Google Scholar 

  90. D.J. Price, C.L. Brooks, A modified TIP3P water potential for simulation with Ewald summation. J. Chem. Phys. 121(20), 10096–10103 (2004)

    Article  CAS  Google Scholar 

  91. P. Mark, L. Nilsson, Structure and dynamics of the TIP3P, SPC, and SPC/E Water Models at 298 K. J. Phys. Chem. A 105(43), 9954–9960 (2001)

    Article  CAS  Google Scholar 

  92. E. Neria, S. Fischer, M. Karplus, Simulation of activation free energies in molecular systems. J. Chem. Phys 105(5), 1902 (1998)

    Article  Google Scholar 

  93. W. Shinoda, M. Shimizu, S. Okazaki, Molecular dynamics study on electrostatic properties of a lipid bilayer: polarization, electrostatic potential, and the effects on structure and dynamics of water near the interface. J. Phys. Chem. B 102(34), 6647–6654 (1998)

    Article  CAS  Google Scholar 

  94. J.E. Davis, O. Rahaman, S. Patel, Molecular dynamics simulations of a DMPC bilayer using nonadditive interaction models. Biophys J 96(2), 385–402 (2009)

    Article  CAS  Google Scholar 

  95. J.S. Hub, T. Salditt, M.C. Rheinstä, B.L. De Groot, Short-range order and collective dynamics of DMPC bilayers: a comparison between molecular dynamics simulations, X-ray, and neutron scattering experiments. Biophys. J. 93, 3156–3168 (2007)

    Article  CAS  Google Scholar 

  96. B. Hess, S. León, N. van der Vegt, K. Kremer, Long time atomistic polymer trajectories from coarse grained simulations: bisphenol-A polycarbonate. Soft Matter 2(5), 409–414 (2006)

    Article  CAS  Google Scholar 

  97. S.K. Kandasamy, R.G. Larson, Molecular dynamics simulations of model trans-membrane peptides in lipid bilayers: A systematic investigation of hydrophobic mismatch. Biophys. J. 90(7), 2326–2343 (2006)

    Article  CAS  Google Scholar 

  98. T. Mori, N. Miyashita, W. Im, M. Feig, Y. Sugita, Molecular dynamics simulations of biological membranes and membrane proteins using enhanced conformational sampling algorithms. Biochim. Biophys. Acta Biomembr. 1858(7), 1635–1651 (2016)

    Article  CAS  Google Scholar 

  99. M. Chavent, A.L. Duncan, M.S. Sansom, Molecular dynamics simulations of membrane proteins and their interactions: from nanoscale to mesoscale. Curr. Opin. Struct. Biol. 40, 8–16 (2016)

    Article  CAS  Google Scholar 

  100. T. Apajalahti et al., Concerted diffusion of lipids in raft-like membranes. Faraday Discuss 144, 411–430. ; discussion 445–81 (2010)

    Article  CAS  Google Scholar 

  101. H. Koldsø, D. Shorthouse, J. Hélie, M.S.P. Sansom, Lipid clustering correlates with membrane curvature as revealed by molecular simulations of complex lipid bilayers. PLoS Comput. Biol 10(10), e1003911 (2014)

    Article  CAS  Google Scholar 

  102. H.I. Ingólfsson et al., Lipid organization of the plasma membrane. J. Am. Chem. Soc. 136(41), 14554–14559 (2014)

    Article  CAS  Google Scholar 

  103. J.E. Goose, M.S.P. Sansom, Reduced lateral mobility of lipids and proteins in crowded membranes. PLoS Comput. Biol 9(4), e1003033 (2013)

    Article  CAS  Google Scholar 

  104. G. Guigas, M. Weiss, Effects of protein crowding on membrane systems. Biochim. Biophys. Acta Biomembr. 1858(10), 2441–2450 (2016)

    Article  CAS  Google Scholar 

  105. M. Javanainen, H. Martinez-Seara, Efficient preparation and analysis of membrane and membrane protein systems. Biochim. Biophys. Acta Biomembr. 1858(10), 2468–2482 (2016)

    Article  CAS  Google Scholar 

  106. W.J. Allen, J.A. Lemkul, D.R. Bevan, GridMAT-MD: A grid-based membrane analysis tool for use with molecular dynamics. J. Comput. Chem. 30(12), 1952–1958 (2009)

    Article  CAS  Google Scholar 

  107. T.A. Özal, C. Peter, B. Hess, N.F.A. van der Vegt, Modeling solubilities of additives in polymer microstructures: single-step perturbation method based on a soft-cavity reference state. Macromolecules 41(13), 5055–5061 (2008)

    Article  CAS  Google Scholar 

  108. S. Noskov, J.C. Gumbart, Membrane proteins: where theory meets experiment. BBA-Biomembranes 1858, 1553–1555 (2016)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuğba Arzu Özal İldeniz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Özal İldeniz, T.A. (2019). Modeling of Cell Membrane Systems. In: Kök, F., Arslan Yildiz, A., Inci, F. (eds) Biomimetic Lipid Membranes: Fundamentals, Applications, and Commercialization. Springer, Cham. https://doi.org/10.1007/978-3-030-11596-8_4

Download citation

Publish with us

Policies and ethics