Biomimetic Membranes as an Emerging Water Filtration Technology

  • Reyhan Sengur-Tasdemir
  • Havva Esra Tutuncu
  • Nevin Gul-Karaguler
  • Esra Ates-Genceli
  • Ismail KoyuncuEmail author


Biomimetic membranes have high water permeability with high selectivity. Recent developments will increase their applications and variety in membrane technologies. This chapter focuses on the type and characteristics of water channels that can be used in these membranes. Also, strategies that can be used for fabrication of biomimetic membranes; lipid/polymer types and concentration that can be used in these membranes; and substrate types that are appropriate to use are summarized in details. The chapter is continued with applications of biomimetic membranes for the treatment of water and wastewater.


Natural water channels Artificial water channels Membrane applications Biomimetic membrane fabrication 



The authors are grateful to TUBITAK (The Scientific and Technological Research Council of Turkey) for the financial support under grant (Project No: 113Y359).


  1. 1.
    I. Kocsis, Z. Sun, Y.M. Legrand, M. Barboiu, Artificial water channels—deconvolution of natural Aquaporins through synthetic design. npj Clean Water 1, 13 (2018)CrossRefGoogle Scholar
  2. 2.
    W.A. Philip, M. Elimelech, The future of seawater desalination: energy technology and the environment. Science 333, 712–717 (2011)CrossRefGoogle Scholar
  3. 3.
    W. Stillwell, Membrane transport, in An Introduction to Biological Membranes, ed. by W. Stillwell, (Elsevier, Amsterdam, 2016), pp. 423–451Google Scholar
  4. 4.
    J.R. Werber, M. Elimelech, Permselectivity limits of biomimetic desalination membranes. Sci. Adv. 4, eaar8266 (2018)CrossRefGoogle Scholar
  5. 5.
    J.T. Van Dongen, A.C. Borstlap, Aquaporins: Structure, Function and Phylogenetic Analysis (Elsevier/Academic Press, London, 2004)Google Scholar
  6. 6.
    D. Brown, The discovery of water channels (Aquaporins). Ann. Nutr. Metab. 70, 37–42 (2017)CrossRefGoogle Scholar
  7. 7.
    S. Scheuring, P. Ringler, M. Borgnia, H. Stahlberg, D.J. Mu, P. Agre, A. Engel, High resolution AFM topographs of the Escherichia coli water channel aquaporin Z. EMBO J. 18, 4981–4987 (1999)CrossRefGoogle Scholar
  8. 8.
    D.F. Savage, P.F. Egea, Y. Robles-colmenares, J.D.O.C. Ii, R.M. Stroud, Architecture and selectivity ° X-ray structure in aquaporins 2. 5: a of aquaporin Z. PLOS Biol. 1, e72 (2003)CrossRefGoogle Scholar
  9. 9.
    M.J. Borgnia, D. Kozono, G. Calamita, P.C. Maloney, P. Agre, G. Ambientale, Functional reconstitution and characterization of AqpZ, the E. . coli water channel protein. J. Mol. Biol. 291, 1169 (1999)CrossRefGoogle Scholar
  10. 10.
    G. Calamita, F. Generale, A. Studi, The Escherichia coli Aquaporin-Z water channel. Mol Microbiol. 37, 254–262 (2000)CrossRefGoogle Scholar
  11. 11.
    C. Zhao, H. Shao, L. Chu, Aquaporin structure – function relationships: water flow through plant living cells. Colloids Surf. B Biointerfaces 62, 163–172 (2008)CrossRefGoogle Scholar
  12. 12.
    G. Calamita, K.E. Rudd, M. Bonhivers, S. Kneip, W.R. Bishal, E. Bremer, P. Agre, The aquaporin-Z water channel gene of Escherichia coli: structure, organization and phylogeny. Biol. Cell, 321–329 (1995)Google Scholar
  13. 13.
    A. Abdelrasoul, H. Doan, A. Lohi, H. Doan, A. Lohi, Chapter 7: Recent development in Aquaporin (Aqp) membrane design recent development in aquaporin (Aqp) membrane design, in Biomimetic and Bioinspired Membranes for New Frontiers in Sustainable Water Treatment Technology, (Croatia InTech, Rijeka, 2017)CrossRefGoogle Scholar
  14. 14.
    J. Habel, M. Hansen, N. Larsen, G.V. Jensen, J. Bomholt, A. Ogbonna, K. Almdal, A. Schulz, Z. Wang, Aquaporin-based biomimetic polymeric membranes: approaches and challenges. Membranes 5, 307–351 (2015)CrossRefGoogle Scholar
  15. 15.
    M. Kumar, M. Grzelakowski, J. Zilles, M. Clark, W. Meier, Highly permeable polymeric membranes based on the incorporation of the functional water channel protein Aquaporin Z. Proc. Natl. Acad. Sci. 104, 20719 (2007)CrossRefGoogle Scholar
  16. 16.
    W. Luo, M. Xie, X. Song, W. Guo, H.H. Ngo, J.L. Zhoud, L.D. Nghiem, Biomimetic aquaporin membranes for osmotic membrane bioreactors: membrane performance and contaminant removal. Bioresour. Technol. 249, 62–68 (2018)CrossRefGoogle Scholar
  17. 17.
    C. Y. Tang, Z. Wang, C. Hélix-Nielsen, Biomimetic Membranes for Water Purification and Wastewater Treatment. In Emerging Membrane Technology for Sustainable Water Treatment. Elsevier, Emerging Membrane Technology for Sustainable Water Treatment, pp. 359–369 (2016). DOI: 10.1016/B978-0-444-63312-5.00014-0Google Scholar
  18. 18.
    Y. Zhao, C.Q. Qiu, X.S. Li, A. Vararattanavech, W.M. Shen, J. Torres, C. Helix-Nielsen, R. Wang, X. Hu, A.G. Fane, C.Y. Tang, Synthesis of robust and high-performance aquaporin-based biomimetic membranes by interfacial polymerization-membrane preparation and RO performance characterization. J. Membr. Sci. 423, 422–428 (2012)CrossRefGoogle Scholar
  19. 19.
    G.P. Bienert, F. Chaumont, Aquaporin-facilitated transmembrane diffusion of hydrogen peroxide. BBA – Gen. Subj. 1840, 1596–1604 (2014)CrossRefGoogle Scholar
  20. 20.
    R. Sengur-Tasdemir, S. Aydin, T. Turken, E.A. Genceli, I. Koyuncu, Biomimetic approaches for membrane technologies. Sep. Purif. Rev. 45, 122–140 (2016)CrossRefGoogle Scholar
  21. 21.
    K. Ishibashi, Y. Tanaka, Y. Morishita, The role of mammalian superaquaporins inside the cell. Biochim. et Biophys. Acta (BBA)-Gen. Subj. 1840, 1507–1512 (2014)CrossRefGoogle Scholar
  22. 22.
    R. Mukhopadhyay, H. Bhattacharjee, B.P. Rosen, Aquaglyceroporins: generalized metalloid channels. BBA – Gen. Subj. 1840, 1583–1591 (2014)CrossRefGoogle Scholar
  23. 23.
    C.Y. Tang, Y. Zhao, R. Wang, C. Hélix-Nielsen, A.G. Fane, Desalination by biomimetic aquaporin membranes: review of status and prospects. Desalination 308, 34–40 (2013)CrossRefGoogle Scholar
  24. 24.
    A.E. I.O.N. Transport, Conserving, Ion transport across energy- conserving membraneGoogle Scholar
  25. 25.
    Y. Shen, P.O. Saboe, I.T. Sines, M. Erbakan, M. Kumar, Biomimetic membranes: a review. J. Membr. Sci. 454, 359–381 (2014)CrossRefGoogle Scholar
  26. 26.
    L. Rose, A.T.A. Jenkins, The effect of the ionophore valinomycin on biomimetic solid supported lipid DPPTE/EPC membranes. J. Bioelec. Chem. 70, 387–393 (2007)Google Scholar
  27. 27.
    C.M. Halsey, D.A. Benham, R.D. Jiji, J.W. Cooley, Molecular and biomolecular spectroscopy influence of the lipid environment on valinomycin structure and cation complex formation. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 96, 200–206 (2012)CrossRefGoogle Scholar
  28. 28.
    T.M. Sanders, M. Myers, M. Asadnia, G.A. Umana-membreno, M. Baker, N. Fowkes, G. Parish, B. Nener, Description of ionophore-doped membranes with a blocked interface. Sens. Actuators B : Chem. 250, 499–508 (2017)CrossRefGoogle Scholar
  29. 29.
    N.C.f.B. Information., PubChem Compound Database; CID=5649, Accessed 09/30/2018
  30. 30.
    S. Kim, P.A. Thiessen, E.E. Bolton, J. Chen, G. Fu, A. Gindulyte, L. Han, J. He, S. He, B.A. Shoemaker, J. Wang, B. Yu, J. Zhang, S.H. Bryant, PubChem substance and compound databases. Nucleic Acids Res. 4, 1202–1203 (2016)CrossRefGoogle Scholar
  31. 31.
    J.C. Freedman, Ionophores in Planar Lipid Bilayers, 4th edn. (Elsevier, 2012)Google Scholar
  32. 32.
    D.A. Kelkar, A. Chattopadhyay, The gramicidin ion channel: a model membrane protein. Biochim Biophys Acta 1768, 2011–2025 (2019)CrossRefGoogle Scholar
  33. 33.
    K. Boukari, G. Paris, T. Gharbi, S. Balme, J. Janot, F. Picaud, Confined nystatin polyenes in nanopore induce biologic ionic selectivity. J. Nanomater. 2016 (2016)Google Scholar
  34. 34.
    M. Barboiu, A. Gilles, From natural to bioassisted and biomimetic artificial water channel systems. Acc. Chem. Res. 46, 2814–2823 (2013)CrossRefGoogle Scholar
  35. 35.
    W. Song, C. Lang, Y.X. Shen, M. Kumar, Design considerations for artificial water channel–based membranes. Annu. Rev. Mater. Res. 48, 57 (2018)CrossRefGoogle Scholar
  36. 36.
    F. Nabeel, T. Rasheed, M. Bilal, C. Li, C. Yu, H.M.F. Iqbal, Bio-inspired supramolecular membranes: a pathway to separation and purification of emerging pollutants. Sep. Purif. Rev., 1 (2018)Google Scholar
  37. 37.
    T.F. De Greef, M.M. Smulders, M. Wolffs, A.P. Schenning, R.P. Sijbesma, E.W. Meijer, Supramolecular polymerization. Chem. Rev. 109, 5687–5754 (2009)CrossRefGoogle Scholar
  38. 38.
    X.B. Hu, Z. Chen, G. Tang, J.L. Hou, Z.T. Li, Singlemolecular artificial transmembrane water channels. J. Am. Chem. Soc. 134, 8384–8387 (2012)CrossRefGoogle Scholar
  39. 39.
    Y.X. Shen, W. Si, M. Erbakan, K. Decker, R. De Zorzi, P.O. Saboe, Y.J. Kang, S. Majd, P.J. Butler, T. Walz, A. Aksimentiev, J.L. Houb, M. Kumar, Highly permeable artificial water channels that can self-assemble into two-dimensional arrays. P. Natl. Acad. Sci. USA 112, 9810–9815 (2015)CrossRefGoogle Scholar
  40. 40.
    N. Sakai, Y. Kamikawa, M. Nishii, T. Matsuoka, T. Kato, S. Matile, Dendritic folate rosettes as ion channels in lipid bilayers. J. Am. Chem. Soc. 128, 2218–2219 (2006)CrossRefGoogle Scholar
  41. 41.
    C. Arnal-Hérault, A. Pasc, M. Michau, D. Cot, E. Petit, M. Barboiu, Functional G-quartet macroscopic membrane films. Angew. Chem. Int. Ed. 46, 8409–8413 (2007)CrossRefGoogle Scholar
  42. 42.
    Y. Le Duc, M. Michau, A. Gilles, V. Gence, Y.M. Legrand, A. Van Der Lee, M. Barboiu, Imidazole-quartet water and proton dipolar channels. Angew. Chem. Int. Ed. 50, 11366–11372 (2011)CrossRefGoogle Scholar
  43. 43.
    R. Hourani, C. Zhang, R. Van Der Weegen, L. Ruiz, C. Li, S. Keten, T. Xu, Processable cyclic peptide nanotubes with tunable interiors. J. Am. Chem. Soc. 133, 15296–15299 (2011)CrossRefGoogle Scholar
  44. 44.
    M.S. Kaucher, M. Peterca, A.E. Dulcey, A.J. Kim, S.A. Vinogradov, D.A. Hammer, P.A. Heiney, V. Percec, Selective transport of water mediated by porous dendritic dipeptides. J. Am. Chem. Soc. 129, 11698–11699 (2007)CrossRefGoogle Scholar
  45. 45.
    S. Schneider, E.D. Licsandru, I. Kocsis, A. Gilles, F. Dumitru, E. Moulin, M. Barboiu, Columnar self-assemblies of triarylamines as scaffolds for artificial biomimetic channels for ion and for water transport. J. Am. Chem. Soc. 139, 3721–3727 (2017)CrossRefGoogle Scholar
  46. 46.
    R. Tunuguntla, A.Y. Hu, Y. Zhang, A. Noy, Impact of PEG additives and pore rim functionalization on water transport through sub-1-nm carbon nanotube porins. Faraday Discuss. 209, 359 (2018)CrossRefGoogle Scholar
  47. 47.
    Y.L. Ji, Q.F. An, Y.S. Guo, W.S. Hung, K.R. Lee, C.J. Gao, Bio-inspired fabrication of high perm-selectivity and anti-fouling membranes based on zwitterionic polyelectrolyte nanoparticles. J. Mater. Chem. A 4, 4224–4231 (2016)CrossRefGoogle Scholar
  48. 48.
    V. Percec, A.E. Dulcey, V.S.K. Balagurusamy, Y. Miura, J. Smidrkal, M. Peterca, S. Nummelin, U. Edlund, S.D. Hudson, P.A. Heiney, D.A. Hu, S.N. Magonov, S.A. Vinogradov, Self-assembly of amphiphilic dendritic dipeptides into helical pores. Nature 430, 764–768 (2004)CrossRefGoogle Scholar
  49. 49.
    I. Kocsis, M. Sorci, H. Vanselous, S. Murail, S.E. Sanders, E. Licsandru, Y.M. Legrand, A. van der Lee, M. Baaden, P.B. Petersen, G. Belfort, M. Barboiu, Oriented chiral water wires in artificial transmembrane channels. Sci. Adv. 4, eaao5603 (2018)CrossRefGoogle Scholar
  50. 50.
    Z. Sun, I. Kocsis, Y. Li, Y.M. Legrand, M. Barboiu, Imidazole derivatives as artificial water channel building-blocks: structural design influence on water permeability. Faraday Discuss. 209, 113 (2018)CrossRefGoogle Scholar
  51. 51.
    H. Zhao, S. Sheng, Y. Hong, H. Zeng, Proton gradient-induced water transport mediated by water wires inside narrow aquapores of aquafoldamer molecules. J. Am. Chem. Soc. 136, 14270–14276 (2014)CrossRefGoogle Scholar
  52. 52.
    Y.X. Shen, W.C. Song, D.Y. Barden, T. Ren, C. Lang, H. Feroz, C.B. Henderson, P.O. Saboe, D. Tsai, H. Yan, P.J. Butler, G.C. Bazan, W.A. Phillip, R.J. Hickey, P.S. Cremer, H. Vashisth, M. Kumar, Achieving high permeability and enhanced selectivity for Angstrom-scale separations using artificial water channel membranes. Nat. Commun. 9, 2294 (2018)CrossRefGoogle Scholar
  53. 53.
    W.X. Feng, Z. Sun, M. Barboiu, Pillar[n]arenes for construction of artificial transmembrane channels. Isr. J. Chem. 58, 1–11 (2018)CrossRefGoogle Scholar
  54. 54.
    M. Vogele, J. Kofinger, G. Hummer, Molecular dynamics simulations of carbon nanotube porins in lipid bilayers. Faraday Discuss. 209, 341 (2018)CrossRefGoogle Scholar
  55. 55.
    Y. Zhang, R.H. Tunuguntla, P.O. Choi, A. Noy, Real-time dynamics of carbon nanotube porins in supported lipid membranes visualized by high-speed atomic force microscopy. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 372, 20160226 (2017)CrossRefGoogle Scholar
  56. 56.
    M. Barboiu, Artificial water channels. Angew. Chem. Int. Ed. 51, 11674–11676 (2012)CrossRefGoogle Scholar
  57. 57.
    P.A. Pedersen, F.B. Bjørkskov, S. Alvisse, C. Helix-Nielsen, From channel proteins to industrial biomimetic membrane technology. Faraday Discuss. 209, 287 (2018)CrossRefGoogle Scholar
  58. 58.
    A. Giwa, S.W. Hasan, A. Yousuf, S. Chakraborty, D.J. Johnson, N. Hilal, Biomimetic membranes: a critical review of recent progress. Desalination 420, 403–424 (2017)CrossRefGoogle Scholar
  59. 59.
    G. Sun, H. Zhou, Y. Li, K. Jeyaseelan, A. Armugam, T.S. Chung, A novel method of AquaporinZ incorporation via binary lipid Langmuir Monolayers. Coll. Surf. B. 89, 283–288 (2012)CrossRefGoogle Scholar
  60. 60.
    P.H.H. Duong, T.S. Chung, K. Jeyaseelan, A. Armugam, Z. Chen, J. Yang, M. Hong, Planar biomimetic aquaporin-incorporated triblock copolymer membranes on porous alumina supports for nanofiltration. J. Membr. Sci. 409-410, 34–43 (2012)CrossRefGoogle Scholar
  61. 61.
    X. Li, R. Wang, C. Tang, A. Vararattanavech, Y. Zhao, J. Torres, A.G. Fane, Preparation of supported lipid membranes for aquaporin Z incorporation. Coll. Surf. B. 94, 333–340 (2012)CrossRefGoogle Scholar
  62. 62.
    P.S. Zhong, T.S. Chung, K. Jeyaseelan, A. Armugam, Aquaporin-embedded biomimetic membranes for nanofiltration. J. Membr. Sci. 407-408, 27–33 (2012)CrossRefGoogle Scholar
  63. 63.
    H. Wang, T.S. Chung, Y.W. Tong, K. Jeyaseelan, A. Armugam, Z. Chen, M.M. Hong, W. Meier, Highly permeable and selective pore-spanning biomimetic membrane embedded with aquaporin Z. Small 8, 1185–1190 (2012)CrossRefGoogle Scholar
  64. 64.
    Y. Kaufman, S. Grinberg, C. Linder, E. Heldman, J. Gilron, Y.X. Shen, M. Kumar, R.G.H. Lammertink, V. Freger, Towards supported bolaamphiphile membranes for water filtration: roles of lipid and substrate. J. Membr. Sci. 457, 50–61 (2014)CrossRefGoogle Scholar
  65. 65.
    M. Wang, Z. Wang, X. Wang, S. Wang, W. Ding, C. Gao, Layer-by-layer assembly of aquaporin Z incorporated biomimetic membranes for water purification. Environ. Sci. Technol. 49, 3761–3768 (2015)CrossRefGoogle Scholar
  66. 66.
    W. Ding, J. Cai, Z. Yu, Q. Wang, Z. Xu, Z. Wang, C. Gao, Fabrication of an aquaporin-based forward osmosis membrane through covalent bonding of a lipid bilayer to a microporous support. J. Mater. Chem. A 3, 20118 (2015)CrossRefGoogle Scholar
  67. 67.
    W. Xie, F. He, B. Wang, T.S. Chung, K. Jeyaseelan, A. Armugam, Y.W. Tong, An aquaporin-based vesicle-embedded polymeric membrane for low energy water filtration. J. Mater. Chem. A 1, 7592 (2013)CrossRefGoogle Scholar
  68. 68.
    X. Li, R. Wang, F. Wicaksana, C. Tang, J. Torres, A.G. Fane, Preparation of high performance nanofiltration (NF) membranes incorporated with aquaporinZ. J. Membr. Sci. 450, 181–188 (2014)CrossRefGoogle Scholar
  69. 69.
    P. Wagh, G. Parungao, R.E. Viola, I.C. Escobar, A new technique to fabricate high-performance biologically inspired membranes for water treatment. Sep. Purif. Technol. 156, 754–765 (2015)CrossRefGoogle Scholar
  70. 70.
    M. Grzelakowski, M.F. Cherenet, Y.X. Shen, M. Kumar, A framework for accurate evaluation of the promise of aquaporin based biomimetic membranes. J. Membr. Sci. 479, 223–231 (2015)CrossRefGoogle Scholar
  71. 71.
    H. Wang, T.S. Chung, Y.W. Tong, W. Meier, Z. Chen, M. Hong, K. Jeyaseelan, A. Armugam, Preparation and characterization of pore-suspending biomimetic membranes embedded with aquaporin Z on carboxylated polyethylene glycol polymer cushion. Soft Matter 7, 7274 (2011)CrossRefGoogle Scholar
  72. 72.
    R. Sengur-Tasdemir, Biomimetic approaches for the fabrication of hollow fiber nanofiltration membranes, in Nanoscience & Nanoengineeering, (Istanbul Technical University, Istanbul, 2018), p. 234Google Scholar
  73. 73.
    D. Saeki, T. Yamashita, A. Fujii, H. Matsuyama, Reverse osmosis membranes based on a supported lipid bilayer with gramicidin a water channels. Desalination 375, 48–53 (2015)CrossRefGoogle Scholar
  74. 74.
    S. Guofei, Biomimetic membranes for desalination and water reuse, in Department of Chemical and Biomolecular Engineering, (National University of Singapore, Singapore, 2013)Google Scholar
  75. 75.
    G. Sun, T.S. Chung, K. Jeyaseelan, A. Armugam, Stabilization and immobilization of aquaporin reconstituted lipid vesicles for water purification. Colloids Surf. B: Biointerfaces 102, 466–471 (2013)CrossRefGoogle Scholar
  76. 76.
    Q. Saren, R. Wang, G. Chaitra, J. Torres, X. Hu, A.G. Fane, Aquaporin-based biomimetic reverse osmosis membranes: stability and long term performance. J. Membr. Sci. 508, 94–103 (2016)CrossRefGoogle Scholar
  77. 77.
    H.L. Wang, T.S. Chung, Y.W. Tong, K. Jeyaseelan, A. Armugam, H.H.P. Duong, F. Fu, H. Seah, J. Yang, M. Hong, Mechanically robust and highly permeable aquaporinZ biomimetic membranes. J. Membr. Sci. 434, 130–136 (2013)CrossRefGoogle Scholar
  78. 78.
    M.E. Palanco, N. Skovgaard, J. Søndergaard Hansen, K. Berg-Sørensen, C. Hélix-Nielsen, Tuning biomimetic membrane barrier properties by hydrocarbon, cholesterol and polymeric additives. Bioinspir. Biomim. 13 (2017)Google Scholar
  79. 79.
    K. Kita-Tokarczyk, J. Grumelard, T. Haefele, W. Meier, Block copolymer vesicles – using concepts from polymer chemistry to mimic biomembranes. Polymer 46, 3540–3563 (2005)CrossRefGoogle Scholar
  80. 80.
    J. Kowal, X. Zhang, I.A. Dinu, C.G. Palivan, W. Meier, Planar biomimetic membranes based on amphiphilic block copolymers. ACS Macro Lett. 3, 59–63 (2014)CrossRefGoogle Scholar
  81. 81.
    R. Rodriguez-Garcia, M. Mell, I. Lopez-Montero, J. Netzel, T. Hellweg, F. Monroy, Polymersomes: smart vesicles of tunable rigidity and permeability. Soft Matter 7, 1532–1542 (2011)CrossRefGoogle Scholar
  82. 82.
    Z. Wang, X. Wang, M. Ding, M. Wang, X. Qi, C. Gao, Impact of monoolein on aquaporin1-based supported lipid bilayer membranes. Sci. Technol. Adv. Mater. 16, 45005 (2015)CrossRefGoogle Scholar
  83. 83.
    J.W.O. O’Connor, J.B. Klauda, Lipid membranes with a majority of cholesterol: applications to the ocular lens and aquaporin 0. J. Phys. Chem. B 115, 6544–6564 (2011)CrossRefGoogle Scholar
  84. 84.
    J. Tong, M.M. Briggs, D. Mlaver, A. Vidal, T.J. McIntosh, Sorting of lens aquaporins and connexins into raft and nonraft bilayers: Role of protein homo-oligomerization. Biophys. J. 97, 2493–3502 (2009)CrossRefGoogle Scholar
  85. 85.
    Y. Zhao, A. Vararattanavech, X. Li, C. Hélix Nielsen, T. Vissing, J. Torres, Effects of proteoliposome composition and draw solution types on separation performance of aquaporin-based proteoliposomes: implications for seawater desalination using aquaporin-based biomimetic membranes. Environ. Sci. Technol. 47, 1496–1503 (2013)Google Scholar
  86. 86.
    T. Ren, M. Erbakan, Y.X. Shen, E. Barbieri, P.O. Saboe, H. Feroz, H. Yan, S. McCuskey, J.F. Hall, A.B. Schantz, G.C. Bazan, P.J. Butler, M. Grzelakowski, M. Kumar, Membrane protein insertion into and compatibility with biomimetic membranes. Adv.. Biosystems. 1, 1700053 (2017)CrossRefGoogle Scholar
  87. 87.
    J. Vogel, M. Perry, J.S. Hansen, P.Y. Bolinger, C. Helix Nielsen, O. Geschke, A support structure for biomimetic applications. J. Micromech. Microeng. 19, 025026 (2009)CrossRefGoogle Scholar
  88. 88.
    Y. Kaufman, S. Grinberg, C. Linder, E. Heldman, J.L. Gilron, V. Freger, Fusion of bolaamphiphile micelles: a method to prepare stable supported biomimetic membranes. Langmuir 29, 1152 (2013)CrossRefGoogle Scholar
  89. 89.
    X. Li, S. Chou, R. Wang, L. Shi, W. Fang, G. Chaitra, C.Y. Tang, J. Torres, X. Hu, A.G. Fane, Nature gives the best solution for desalination: aquaporin-based hollow fiber composite membrane with superior performance. J. Membr. Sci. 434, 130–136 (2015)CrossRefGoogle Scholar
  90. 90.
    X. Li, C.H. Loh, R. Wang, W. Widjajanti, J. Torres, Fabrication of a robust high-performance FO membrane by optimizing substrate structure and incorporating aquaporin into selective layer. J. Membr. Sci. 525, 257–268 (2017)CrossRefGoogle Scholar
  91. 91.
    G. Sun, T.S. Chung, K. Jeyaseelan, A. Armugam, A layer-by-layer self-assembly approach to developing an aquaporin-embedded mixed matrix membrane. RSC Adv. 3, 473–481 (2013)CrossRefGoogle Scholar
  92. 92.
    S. Wang, J. Cai, W. Ding, Z. Xu, Z. Wang, Bio-inspired aquaporinz containing double-skinned forward osmosis membrane synthesized through layer-by-layer assembly. Membranes 5, 369–384 (2015)CrossRefGoogle Scholar
  93. 93.
    A. Granéli, J. Rydström, B. Kasemo, F. Höök, Formation of supported lipid bilayer membranes on SiO2 from proteoliposomes containing transmembrane proteins. Langmuir 19, 842–850 (2003)CrossRefGoogle Scholar
  94. 94.
    X. Li, R. Wang, F. Wicaksana, Y. Zhao, C. Tang, J. Torres, A.G. Fane, Fusion behaviour of aquaporin Z incorporated proteoliposomes investigated by quartz crystal microbalance with dissipation (QCM-D). Colloids Surf. B: Biointerfaces 111, 446–452 (2013)CrossRefGoogle Scholar
  95. 95.
    R. Richter, A. Mukhopadhyay, A. Brisson, Pathways of lipid vesicle deposition on solid surfaces: a combined QCM-D and AFM study. Biophys. J. 85, 3035–3047 (2003)CrossRefGoogle Scholar
  96. 96.
    Z. Wang, H. Shao, J. Ye, L. Tang, P. Lu, Dibenzosuberenylidene-ended fluorophores: rapid and efficient synthesis, characterization, and aggregation-induced emissions. J. Phys. Chem. B 109, 19627–19633 (2005)CrossRefGoogle Scholar
  97. 97.
    E. Reimhult, C. Larsson, B. Kasemo, F. Höök, Simultaneous surface plasmon resonance and quartz crystal microbalance with dissipation monitoring measurements of biomolecular adsorption events involving structural transformations and variations in coupled water. Anal. Chem. 76, 7211–7220 (2004)CrossRefGoogle Scholar
  98. 98.
    E. Reimhult, M. Zäch, F. Höök, B. Kasemo, A multitechnique study of liposome adsorption on au and lipid bilayer formation on SiO2. Langmuir 22, 3313–3319 (2006)CrossRefGoogle Scholar
  99. 99.
    N. Kohli, S. Vaidya, R.Y. Ofoli, R.M. Worden, I. Lee, Arrays of lipid bilayers and liposomes on patterned polyelectrolyte templates. J. Colloid Interface Sci. 301, 461 (2006)CrossRefGoogle Scholar
  100. 100.
    Y.X. Shen, M. Kumar, Artificial water channels: bioinspired and energy-efficient filtration materials, in: AIChE Annual Meet., (Minneapolis, MN, 2017)Google Scholar
  101. 101.
    W. Song, Y.X. Shen, C. Lang, P. Saha, I.V. Zenyuk, R.J. Hickeye, M. Kumar, Unique selectivity trends of highly permeable PAP[5] water channel membranes. Faraday Discuss. 209, 193 (2018)CrossRefGoogle Scholar
  102. 102.
    G. Sun, T.S. Chung, N. Chen, X. Lu, Q. Zhao, Highly permeable aquaporin-embedded biomimetic membranes featuring a magnetic-aided approach. RSC Adv. 3, 9178 (2013)CrossRefGoogle Scholar
  103. 103.
    C.S. Lee, M.K. Choi, Y.Y. Hwang, H. Kim, M.K. Kim, Y.J. Lee, Facilitated water transport through graphene oxide membranes functionalized with aquaporin-mimicking peptides. Adv. Mater. 30, 1705944 (2018)CrossRefGoogle Scholar
  104. 104.
    C. Schneider, S. Rajmohan, A. Zarebska, P. Tsapekos, C. Hélix-Nielsen, Treating anaerobic effluents using forward osmosis for combined water purification and biogas production. Sci. Total Environ. 647, 1021–1030 (2019)CrossRefGoogle Scholar
  105. 105.
    N. Singh, I. Petrinic, C. Helix-Nielsen, S. Basu, M. Balakrishnan, Concentrating molasses distillery wastewater using biomimetic forward osmosis (FO) membranes. Water Res. 130, 271–280 (2018)CrossRefGoogle Scholar
  106. 106.
    L.L. Xia, M.F. Andersen, C. Helix-Nielsen, J.R. McCutcheon, Novel commercial aquaporin flat-sheet membrane for forward osmosis. Ind. Eng. Chem. Res. 56, 11919–11925 (2017)CrossRefGoogle Scholar
  107. 107.
    M.S. Camilleri Rumbau, L.C. Vargas, A. Romagnoli, K. Trzaskus, E. Gad, C. Hélix-Nielsen, Concentration of downstream effluents from pharmaceutical industry using aquaporin InsideTM hollow fiber forward osmosis membranes – influence of flow conditions on membrane performance., in: 11th International Congress on Membranes and Membrane Processes (ICOM 2017), San Francisco, CA, 2017Google Scholar
  108. 108.
    N. Bajraktari, H.T. Madsen, M.F. Gruber, S. Truelsen, E.L. Jensen, H. Jensen, C. Helix-Nielsen, Separation of peptides with forward osmosis biomimetic membranes. Membranes (Basel) 6, 1–12 (2016)Google Scholar
  109. 109.
    W. Ye, J. Lin, H.T. Madsen, E.G. Søgaard, C. Hélix-Nielsen, P. Luis, B. Van der Bruggen, Enhanced performance of a biomimetic membrane for Na2CO3 crystallization in the scenario of CO2 capture. J. Membr. Sci. 498, 75–85 (2016)CrossRefGoogle Scholar
  110. 110.
    H.T. Madsen, N. Bajraktari, C. Hélix-Nielsen, B. Van der Bruggen, E.G. Søgaard, Use of biomimetic forward osmosis membrane for trace organics removal. J. Membr. Sci. 476, 469–474 (2015)CrossRefGoogle Scholar
  111. 111.
    A. Zarebska, I. Petrinic, T. Hey, C. Hélix-Nielsen, J.L.C. Jansen, Fouling characterization of forward osmosis biomimetic aquaporin membranes used for water recovery from municipal wastewater, in: International Conference on Emerging Water Desalination Technologies in Municipal and Industrial Applications, (San Diego, USA, 2015)Google Scholar
  112. 112.
    S.M.D. Iskander, J.T. Novak, Z. He, Enhancing forward osmosis water recovery from landfill leachate by desalinating brine and recovering ammonia in a microbial desalination cell. Bioresour. Technol. 255, 76–82 (2018)CrossRefGoogle Scholar
  113. 113.
    W. Luo, B. Arhatari, S.R. Gray, M. Xie, Seeing is believing: insights from synchrotron infrared mapping for membrane fouling in osmotic membrane bioreactors. Water Res. 137, 355–361 (2018)CrossRefGoogle Scholar
  114. 114.
    Y. Yang, X. Yang, Z. He, Bioelectrochemically-assisted mitigation of salinity buildup and recovery of reverse-fluxed draw solute in an osmotic membrane bioreactor. Water Res. 141, 259–267 (2018)CrossRefGoogle Scholar
  115. 115.
    F.M. Munshi, J. Church, R. McLean, N. Maier, A.H.M.A. Sadmani, S.J. Duranceau, W.H. Lee, Dewatering algae using an aquaporin-based polyethersulfone forward osmosis membrane. Sep. Purif. Technol. 204, 154–161 (2018)CrossRefGoogle Scholar
  116. 116.
    S. Engelhardt, A. Sadek, S. Duirk, Rejection of trace organic water contaminants by an aquaporin-based biomimetic hollow fiber membrane. Sep. Purif. Technol. 197, 170–177 (2018)CrossRefGoogle Scholar
  117. 117.
    Y. Chun, L. Qing, G. Sun, M.R. Bilad, A.G. Fane, T.H. Chon, Prototype aquaporin-based forward osmosis membrane: filtration properties and fouling resistance. Desalination 445, 75–84 (2018)CrossRefGoogle Scholar
  118. 118.
    J. Ren, J.R. McCutcheon, A new commercial biomimetic hollow fiber membrane for forward osmosis. Desalination 442, 44–50 (2018)CrossRefGoogle Scholar
  119. 119.
    J.L. Soler-Cabezas, J.A. Mendoza-Roca, M.C. Vincent-Vela, M.J. Luján-Facundo, L. Pastor-Alcañiz, Simultaneous concentration of nutrients from anaerobically digested sludge centrate and pre-treatment of industrial effluents by forward osmosis. Sep. Purif. Technol. 193, 289–296 (2017)CrossRefGoogle Scholar
  120. 120.
    S. Zou, M. Qin, Y. Moreau, Z. He, Nutrient-energy-water recovery from synthetic sidestream centrate using a microbial electrolysis cell – forward osmosis hybrid system. J. Clean. Prod. 154, 16–25 (2017)CrossRefGoogle Scholar
  121. 121.
    J. Xu, T.N. Tran, H. Lin, N. Dai, Removal of disinfection byproducts in forward osmosis for wastewater recycling. J. Membr. Sci. 564, 352–360 (2018)CrossRefGoogle Scholar
  122. 122.
    S. Kalafatakis, S. Braekevelt, A. Lymperatou, A. Zarebska, C. Helix-Nielsen, L. Lange, I.V. Skiadas, H.N. Gavala, Application of forward osmosis technology in crude glycerol fermentation biorefinery-potential and challenges. Bioprocess Biosyst. Eng. 41, 1089–1101 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Reyhan Sengur-Tasdemir
    • 1
    • 2
  • Havva Esra Tutuncu
    • 3
  • Nevin Gul-Karaguler
    • 3
  • Esra Ates-Genceli
    • 2
    • 4
  • Ismail Koyuncu
    • 1
    • 2
    • 4
    Email author
  1. 1.Nanoscience and Nanoengineering DepartmentIstanbul Technical UniversityIstanbulTurkey
  2. 2.National Research Center on Membrane Technologies, Istanbul Technical UniversityIstanbulTurkey
  3. 3.Molecular Biology and Genetics DepartmentIstanbul Technical UniversityIstanbulTurkey
  4. 4.Environmental Engineering DepartmentIstanbul Technical UniversityIstanbulTurkey

Personalised recommendations