Biomimetic Model Membranes as Drug Screening Platform

  • Rumeysa Bilginer
  • Ahu Arslan YildizEmail author


Biomimetic model membranes were inspired by natural cell membrane and are rapidly progressing in the field for varied applications, especially for drug screening studies. Biomimetic lipid membranes such as lipid monolayer, lipid vesicles, and supported lipid membranes have been constructed to investigate the cell membrane and membrane protein interaction with various drugs. Also, biomimetic lipid membranes provide an experimental platform to understand disease at the molecular level, which is also an important step for developing new therapeutic agents. This chapter covers biomimetic model membrane types utilized to screen drug–membrane and drug–receptor interactions, characterization techniques, and an overview of recent work in the field.


Drug discovery/screening Drug–membrane interaction Drug–receptor interaction Biomimetic membrane models Supported lipid membrane 


  1. 1.
    J. K. Seydel, M. A. Velasco, E. A. Coats, H. P. Cordes, B. Kunz, M. Wiese, The importance of drug-membrane interaction in drug research and development. Quantative Structure-Activity Relatioships, 11(2), 205–210 (1992)Google Scholar
  2. 2.
    A. S. Chiranjeevi Peetla, V. Labhasetwar, Biophysical interactions with model lipid membranes: applications in drug discovery and drug delivery. Mol. Pharm. 6, 1264–1276 (2009)CrossRefGoogle Scholar
  3. 3.
    R. Pignatello, T. Musumeci, L. Basile, C. Carbone, G. Puglisi, Biomembrane models and drug-biomembrane interaction studies: Involvement in drug design and development. J. Pharm. Bioallied Sci. 3(1), 4–14 (2011)CrossRefGoogle Scholar
  4. 4.
    C. Bernsdorff, R. Reszka, R. Winter, Interaction of the anticancer agent Taxol (TM) (paclitaxel) with phospholipid bilayers. J. Biomed. Mater. Res. 46(2), 141–149 (1999)CrossRefGoogle Scholar
  5. 5.
    L. Panicker, V. Sugandhi, K.P. Mishra, Interaction of keratolytic drug, salicylic acid with dipalmitoyl phosphatidylethanolamine vesicles. Phase Transit. 81(4), 361–378 (2008)CrossRefGoogle Scholar
  6. 6.
    A. Preetha, N. Huilgol, R. Banerjee, Effect of fluidizing agents on paclitaxel penetration in cervical cancerous monolayer membranes. J. Membr. Biol. 219(1–3), 83–91 (2007)CrossRefGoogle Scholar
  7. 7.
    A. Berquand, N. Fa, Y.F. Dufrêne, M.P. Mingeot-Leclercq, Interaction of the macrolide antibiotic azithromycin with lipid bilayers: effect on membrane organization, fluidity, and permeability. Pharm. Res. 22(3), 465–475 (2005)CrossRefGoogle Scholar
  8. 8.
    M. Pinheiro, C. Nunes, J.M. Caio, C. Moiteiro, M. Lucio, G. Brezesinski, S. Reis, The influence of rifabutin on human and bacterial membrane models: implications for its mechanism of action. J. Phys. Chem. B 117(20), 6187–6193 (2013)CrossRefGoogle Scholar
  9. 9.
    D. Nieciecka, A. Królikowska, P. Krysinski, Probing the interactions of mitoxantrone with biomimetic membranes with electrochemical and spectroscopic techniques. Electrochim. Acta 165, 430–442 (2015)CrossRefGoogle Scholar
  10. 10.
    O. Domenech, G. Francius, P.M. Tulkens, F. Van Bambeke, Y. Dufrene, M.P. Mingeot-Leclercq, Interactions of oritavancin, a new lipoglycopeptide derived from vancomycin, with phospholipid bilayers: effect on membrane permeability and nanoscale lipid membrane organization. Biochim. Biophys. Acta 1788(9), 1832–1840 (2009)CrossRefGoogle Scholar
  11. 11.
    I. Alves, G. Staneva, C. Tessier, G.F. Salgado, P. Nuss, The interaction of antipsychotic drugs with lipids and subsequent lipid reorganization investigated using biophysical methods. Biochim. Biophys. Acta 1808(8), 2009–2018 (2011)CrossRefGoogle Scholar
  12. 12.
    P. Kuhn, K. Eyer, S. Allner, D. Lombardi, P.S. Dittrich, A microfluidic vesicle screening platform: monitoring the lipid membrane permeability of tetracyclines. Anal. Chem. 83(23), 8877–8885 (2011)CrossRefGoogle Scholar
  13. 13.
    N.K. Khadka, X. Cheng, C.S. Ho, J. Katsaras, J. Pan, Interactions of the anticancer drug tamoxifen with lipid membranes. Biophys. J. 108(10), 2492–2501 (2015)CrossRefGoogle Scholar
  14. 14.
    A. Arslan Yildiz, C. Kang, E.K. Sinner, Biomimetic membrane platform containing hERG potassium channel and its application to drug screening. Analyst 138(7), 2007–2012 (2013a)CrossRefGoogle Scholar
  15. 15.
    B. Le Pioufle, H. Suzuki, K.V. Tabata, H. Noji, S. Takeuchi, Lipid bilayer microarray for parallel recording of transmembrane ion currents. Anal. Chem. 80, 328–332 (2008)CrossRefGoogle Scholar
  16. 16.
    E.K. Schmitt, M. Vrouenraets, C. Steinem, Channel activity of OmpF monitored in nano-BLMs. Biophys. J. 91(6), 2163–2171 (2006)CrossRefGoogle Scholar
  17. 17.
    S. Damiati, S. Zayni, A. Schrems, E. Kiene, U.B. Sleytr, J. Chopineau, B. Schuster, E.K. Sinner, Inspired and stabilized by nature: ribosomal synthesis of the human voltage gated ion channel (VDAC) into 2D-protein-tethered lipid interfaces. Biomater. Sci. 3(10), 1406–1413 (2015)CrossRefGoogle Scholar
  18. 18.
    R. Syeda, M.A. Holden, W.L. Hwang, H. Bayley, Screening blockers against a potassium channel with a droplet interface bilayer array. J. Am. Chem. Soc. 130, 15543–15548 (2008)CrossRefGoogle Scholar
  19. 19.
    A.A. Yildiz, W. Knoll, R.B. Gennis, E.K. Sinner, Cell-free synthesis of cytochrome bo(3) ubiquinol oxidase in artificial membranes. Anal. Biochem. 423(1), 39–45 (2012)CrossRefGoogle Scholar
  20. 20.
    T.H. Bayburt, A.J. Leitz, G. Xie, D.D. Oprian, S.G. Sligar, Transducin activation by nanoscale lipid bilayers containing one and two rhodopsins. J. Biol. Chem. 282(20), 14875–14881 (2007)CrossRefGoogle Scholar
  21. 21.
    T.H. Bayburt, S.G. Sligar, Self-assembly of single integral membrane proteins into soluble nanoscale phospholipid bilayers. Protein Sci. 12(11), 2476–2481 (2003)CrossRefGoogle Scholar
  22. 22.
    A.Z. Kijac, Y. Li, S.G. Sligar, C.M. Rienstra, Magic-angle spinning solid-state NMR spectroscopy of nanodisc-embedded human CYP3A4. Biochemistry 46, 13696–13703 (2007)CrossRefGoogle Scholar
  23. 23.
    T. Boldog, S. Grimme, M. Li, S.G. Sligar, G.L. Hazelbauer, Nanodiscs separate chemoreceptor oligomeric states and reveal their signaling properties. PNAS 103, 11509–11514 (2006)CrossRefGoogle Scholar
  24. 24.
    K. Dalal, N. Nguyen, M. Alami, J. Tan, T.F. Moraes, W.C. Lee, R. Maurus, S.S. Sligar, G.D. Brayer, F. Duong, Structure, binding, and activity of Syd, a SecY-interacting protein. J. Biol. Chem. 284(12), 7897–7902 (2009)CrossRefGoogle Scholar
  25. 25.
    Y. Gao, E. Cao, D. Julius, Y. Cheng, TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action. Nature 534(7607), 347–351 (2016)CrossRefGoogle Scholar
  26. 26.
    J.H. Wade, J.D. Jones, I.L. Lenov, C.M. Riordan, S.G. Sligar, R.C. Bailey, Microfluidic platform for efficient Nanodisc assembly, membrane protein incorporation, and purification. Lab. Chip. 17(17), 2951–2959 (2017)CrossRefGoogle Scholar
  27. 27.
    P.B. Bennett, H.R. Guthrie, Trends in ion channel drug discovery: advances in screening technologies. Trends Biotechnol. 21(12), 563–569 (2003)CrossRefGoogle Scholar
  28. 28.
    Y.H. Ye Fang, B. Webb, J. Lahiri, Applications of biomembranes in drug discovery. MRS Bull. 31, 541–545 (2006)CrossRefGoogle Scholar
  29. 29.
    N.S. Schonenbach, S. Hussain, M.A. O'Malley, Structure and function of G protein-coupled receptor oligomers: implications for drug discovery. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 7(3), 408–427 (2015)CrossRefGoogle Scholar
  30. 30.
    J.M. Karasinska, S.R. George, B.F. O’Dowd, Family 1 G protein-coupled receptor function in the CNS. Insights from gene knockout mice. Brain Res. Brain Res. Rev. 41(2–3), 125–152 (2003)CrossRefGoogle Scholar
  31. 31.
    P.R. Gorry, P. Ancuta, Coreceptors and HIV-1 pathogenesis. Curr. HIV/AIDS Rep. 8(1), 45–53 (2011)CrossRefGoogle Scholar
  32. 32.
    I. Palmisano, P. Bagnato, A. Palmigiano, G. Innamorati, G. Rotondo, D. Altimare, C. Venturi, E.V. Sviderskaya, R. Piccirillo, M. Coppola, V. Marigo, B. Incerti, A. Ballabio, E.M. Surace, C. Tacchetti, D.C. Bennett, M.V. Schiaffino, The ocular albinism type 1 protein, an intracellular G protein-coupled receptor, regulates melanosome transport in pigment cells. Hum. Mol. Genet. 17(22), 3487–3501 (2008)CrossRefGoogle Scholar
  33. 33.
    J.P. Overington, B. Al-Lazikani, A.L. Hopkins, How many drug targets are there? Nat. Rev. Drug Discov. 5(12), 993–996 (2006)CrossRefGoogle Scholar
  34. 34.
    A. Mullard, 2013 FDA drug approvals. Nat. Rev. Drug Discov. 13(2), 85–89 (2014)CrossRefGoogle Scholar
  35. 35.
    J.M. Ford, W.N. Hait, Pharmacology of drugs that alter multidrug resistance in cancer. Pharmacol. Rev. 42(3), 155–199 (1990)Google Scholar
  36. 36.
    J. Pallares-Trujillo, F.J. Lopez-Soriano, J.M. Argiles, Lipids: a key role in multidrug resistance? (review). Int. J. Oncol. 16, 783–798 (2000)Google Scholar
  37. 37.
    P. Cohen, Protein kinases – the major drug target of twenty century. Nat. Rev. Drug Discov. 1(4), 309–315 (2002)CrossRefGoogle Scholar
  38. 38.
    N.V. Koudinova, A. Kontush, T.T. Berezov, A.R. Koudinov, Amyloid beta, neurallipids, cholesterol& Alzheimer’s disease. Neurobiol. Lipids. 1(6), 27–33 (2003)Google Scholar
  39. 39.
    N.B. Chauhan, Membrane dynamics, cholesterol homeostasis, and Alzheimer’s disease. J. Lipid Res. 44(11), 2019–2029 (2003)CrossRefGoogle Scholar
  40. 40.
    Y. Verdier, M. Zarandi, B. Penke, Amyloid beta-peptide interactions with neuronal and glial cell plasma membrane: binding sites and implications for Alzheimer's disease. J. Pept. Sci. 10(5), 229–248 (2004)CrossRefGoogle Scholar
  41. 41.
    J.M. Alakoskela, P. Vitovic, P.K. Kinnunen, Screening for the drug-phospholipid interaction: correlation to phospholipidosis. ChemMedChem 4(8), 1224–1251 (2009)CrossRefGoogle Scholar
  42. 42.
    I.G. Denisov, S.G. Sligar, Nanodiscs for structural and functional studies of membrane proteins. Nat. Struct. Mol. Biol. 23(6), 481–486 (2016)CrossRefGoogle Scholar
  43. 43.
    C.-Y. Hsia, M.J. Richards, S. Daniel, A review of traditional and emerging methods to characterize lipid–protein interactions in biological membranes. Anal. Methods 7(17), 7076–7094 (2015)CrossRefGoogle Scholar
  44. 44.
    M.D. Marc Eeman, From biological membranes to biomimetic model. Biotechnol. Agron. Soc. Environ. 14(4), 719–736 (2010)Google Scholar
  45. 45.
    J. Knobloch, D.K. Suhendro, J.L. Zieleniecki, J.G. Shapter, I. Koper, Membrane-drug interactions studied using model membrane systems. Saudi J. Biol. Sci. 22(6), 714–718 (2015)CrossRefGoogle Scholar
  46. 46.
    M. Lúcio, J.L. F, C. L, S. Reis, Drug-membrane interactions significance for medicinal chemistry. Curr. Med. Chem. 17, 1795–1809 (2010)CrossRefGoogle Scholar
  47. 47.
    H. Brockman, Lipid monolayers why use half a membrane to characterize. Curr. Opin. Struct. Biol. 9, 438–443 (1999)CrossRefGoogle Scholar
  48. 48.
    A.C. Alves, D. Ribeiro, C. Nunes, S. Reis, Biophysics in cancer: the relevance of drug-membrane interaction studies. Biochim. Biophys. Acta 1858(9), 2231–2244 (2016)CrossRefGoogle Scholar
  49. 49.
    V. Rosilio, How Can Artificial Lipid Models Mimic the Complexity of Molecule–Membrane Interactions?. Advances in Biomembranes and Lipid Self-Assembly, Elsevier, 27, 107–146 (2018)Google Scholar
  50. 50.
    M. Deleu, J.M. Crowet, M.N. Nasir, L. Lins, Complementary biophysical tools to investigate lipid specificity in the interaction between bioactive molecules and the plasma membrane: a review. Biochim. Biophys. Acta 1838(12), 3171–3190 (2014)CrossRefGoogle Scholar
  51. 51.
    Y.H. Chan, S.G. Boxer, Model membrane systems and their applications. Curr. Opin. Chem. Biol. 11(6), 581–587 (2007)CrossRefGoogle Scholar
  52. 52.
    A. Kilic, F.N. Kok, Biomimetic lipid bilayers on solid surfaces: models for biological interactions. Surf.Innov. 4(3), 141–157 (2016)CrossRefGoogle Scholar
  53. 53.
    H.T.T. Amma Wardak, Cyclic voltammetry studies of bilayer lipid membrane ranes deposited on platinum by self assembly. Bioelectrochem. Bioenerg. 24, 1–11 (1990)CrossRefGoogle Scholar
  54. 54.
    R. Guidelli, G. Aloisi, L. Becucci, A. Dolfi, M.R. Moncelli, F.T. Buoninsegni, Bioelectrochemistry at metal/water interfaces. J. Electroanal. Chem. 504, 1–28 (2001)CrossRefGoogle Scholar
  55. 55.
    A. Arslan Yildiz, U.H. Yildiz, B. Liedberg, E.K. Sinner, Biomimetic membrane platform: fabrication, characterization and applications. Colloids Surf. B Biointerfaces 103, 510–516 (2013b)CrossRefGoogle Scholar
  56. 56.
    V. Atanasov, P.P. Atanasova, I.K. Vockenroth, N. Knorr, I. Köper, A molecular toolkit for highly insulating tethered bilayer lipid membranes on various substrates. Bioconjug. Chem. 17, 631–637 (2006)CrossRefGoogle Scholar
  57. 57.
    T. Yu, G. Zhou, X. Hu, S. Ye, Transport and organization of cholesterol in a planar solid-supported lipid bilayer depend on the phospholipid flip-flop rate. Langmuir 32(44), 11681–11689 (2016)CrossRefGoogle Scholar
  58. 58.
    J.P. Michel, Y.X. Wang, I. Kiesel, Y. Gerelli, V. Rosilio, Disruption of asymmetric lipid bilayer models mimicking the outer membrane of gram-negative Bacteria by an active Plasticin. Langmuir 33(41), 11028–11039 (2017)CrossRefGoogle Scholar
  59. 59.
    D. Zhang, M. Pekkanen-Mattila, M. Shahsavani, A. Falk, A.I. Teixeira, A. Herland, A 3D Alzheimer’s disease culture model and the induction of P21-activated kinase mediated sensing in iPSC derived neurons. Biomaterials 35(5), 1420–1428 (2014)CrossRefGoogle Scholar
  60. 60.
    I.G. Denisov, S.G. Sligar, Nanodiscs in membrane biochemistry and biophysics. Chem. Rev. 117(6), 4669–4713 (2017)CrossRefGoogle Scholar
  61. 61.
    A. Nath, W.M. Atkins, S.G. Sligar, Applications of phospholipid bilayer nanodiscs in the study of membranes and membrane proteins. Biochemistry 46, 2056–2067 (2007)CrossRefGoogle Scholar
  62. 62.
    T.K. Ritchie, Y.V. Grinkova, T.H. Bayburt, I.G. Denisov, J.K. Zolnerciks, W.M. Atkins, S.G. Sligar, Reconstitution of membrane proteins in phospholipid bilayer nanodiscs. Meth. Enzymol. 464(Liposomes, Part F), 211–231 (2009)CrossRefGoogle Scholar
  63. 63.
    J.M. Gluck, B.W. Koenig, D. Willbold, Nanodiscs allow the use of integral membrane proteins as analytes in surface plasmon resonance studies. Anal. Biochem. 408(1), 46–52 (2011)CrossRefGoogle Scholar
  64. 64.
    C. Roos, L. Kai, D. Proverbio, U. Ghoshdastider, S. Filipek, V. Dotsch, F. Bernhard, Co-translational association of cell-free expressed membrane proteins with supplied lipid bilayers. Mol. Membr. Biol. 30(1), 75–89 (2013)CrossRefGoogle Scholar
  65. 65.
    S.G. Rasmussen, H.J. Choi, J.J. Fung, E. Pardon, P. Casarosa, P.S. Chae, B.T. Devree, D.M. Rosenbaum, F.S. Thian, T.S. Kobilka, A. Schnapp, I. Konetzki, R.K. Sunahara, S.H. Gellman, A. Pautsch, J. Steyaert, W.I. Weis, B.K. Kobilka, Structure of a nanobody-stabilized active state of the beta(2) adrenoceptor. Nature 469(7329), 175–180 (2011)CrossRefGoogle Scholar
  66. 66.
    A. Obergrussberger, S. Stolzle-Feix, N. Becker, A. Bruggemann, N. Fertig, C. Moller, Novel screening techniques for ion channel targeting drugs. Channels (Austin) 9(6), 367–375 (2015)CrossRefGoogle Scholar
  67. 67.
    N. Fertig, R.H. Blick, J.C. Behrends, Whole cell patch clamp recording performed on a planar glass chip. Biophys. J. 82, 3056–3062 (2002)CrossRefGoogle Scholar
  68. 68.
    A.E. Dubin, N. Nasser, J. Rohrbacher, A.N. Hermans, R. Marrannes, C. Grantham, K. Van Rossem, M. Cik, S.R. Chaplan, D. Gallacher, J. Xu, A. Guia, N.G. Byrne, C. Mathes, Identifying modulators of hERG channel activity using the PatchXpress planar patch clamp. J. Biomol. Screen. 10(2), 168–181 (2005)CrossRefGoogle Scholar
  69. 69.
    Z.L. Mo, T. Faxel, Y.S. Yang, R. Gallavan, D. Messing, A. Bahinski, Effect of compound plate composition on measurement of hERG current IC(50) using PatchXpress. J. Pharmacol. Toxicol. Methods 60(1), 39–44 (2009)CrossRefGoogle Scholar
  70. 70.
    H. Tao, D.S. Ana, A. Guia, M. Huang, J. Ligutti, G. Walker, K. Sithiphong, F. Chan, T. Guoliang, Z. Zozulya, S. Saya, R. Phimmachack, C. Sie, J. Yuan, L. Wu, J. Xu, A. Ghetti, Automated tight seal electrophysiology for assessing the potential hERG liability of pharmaceutical compounds. Assay Drug Dev. Technol. 2(5), 497–506 (2004)CrossRefGoogle Scholar
  71. 71.
    J. Kutchinsky, S. Friis, M. Asmild, R. Taboryski, S. Pedersen, R.K. Vestergaard, R.B. Jacobsen, K. Krzywkowski, R.L. Schrøder, T. Ljungstrøm, N. Hélix, C.B. Sørensen, M. Bech, N.J. Willumsen, Characterization of Potassium Channel modulators with QPatch automated patch-clamp technology: system characteristics and performance. Assay Drug Dev. Technol. 1, 685–693 (2003)CrossRefGoogle Scholar
  72. 72.
    R.L. Schroder, S. Friis, M. Sunesen, C. Mathes, N.J. Willumsen, Automated patch-clamp technique: increased throughput in functional characterization and in pharmacological screening of small-conductance Ca2+ release-activated Ca2+ channels. J. Biomol. Screen. 13(7), 638–647 (2008)CrossRefGoogle Scholar
  73. 73.
    J. Pihl, J. Sinclair, E. Sahlin, M. Karlsson, F. Petterson, J. Olofsson, O. Orwar*, Microfluidic gradient-generating device for pharmalogical profiling. Anal. Chem. 77, 3897–3903 (2005)CrossRefGoogle Scholar
  74. 74.
    M.R. Nussio, M.J. Sykes, J.O. Miners, J.G. Shapter, Characterisation of the binding of cationic amphiphilic drugs to phospholipid bilayers using surface plasmon resonance. ChemMedChem 2(3), 366–373 (2007)CrossRefGoogle Scholar
  75. 75.
    A. Das, J. Zhao, G.C. Schatz, S.G. Sligar, R.P.V. Duyne, Screening of type I and II drug binding to human cytochrome P450-3A4 in Nanodiscs by localized surface Plasmon resonance spectroscopy. Anal. Chem. 81, 3754–3759 (2009)CrossRefGoogle Scholar
  76. 76.
    A. Watts, Solid-state NMR in drug design and discovery for membrane-embedded targets. Nat. Rev. Drug Discov. 4(7), 555–568 (2005)CrossRefGoogle Scholar
  77. 77.
    J.C. Debouzy, L. Mehenni, D. Crouzier, M. Lahiani-Skiba, G. Nugue, M. Skiba, NMR and ESR study of amphotericin B interactions with various binary phosphatidylcholine/phosphatidylglycerol membranes. Int. J. Pharm. 521(1–2), 384–394 (2017)CrossRefGoogle Scholar
  78. 78.
    J. Casas, M. Ibarguren, R. Alvarez, S. Teres, V. Llado, S.P. Piotto, S. Concilio, X. Busquets, D.J. Lopez, P.V. Escriba, G protein-membrane interactions II: effect of G protein-linked lipids on membrane structure and G protein-membrane interactions. Biochim. Biophys. Acta 1859(9 Pt B), 1526–1535 (2017)CrossRefGoogle Scholar
  79. 79.
    S. Morandat, S. Azouzi, E. Beauvais, A. Mastouri, K. El Kirat, Atomic force microscopy of model lipid membranes. Anal. Bioanal. Chem. 405(5), 1445–1461 (2013)CrossRefGoogle Scholar
  80. 80.
    J.A.N. Zasadzinski, C.A. Helm, M.L. Longo, A.L. Weisenhorn, S.A.C. Gould, P.K. Hansmat, Atomic force microscopy of hydrated phosphatidylethanolamine bilayers. Biophys. J. 59, 755–760 (1991)CrossRefGoogle Scholar
  81. 81.
    S. Merino, O. Domenech, I. Diez, F. Sanz, M. Vinas, M.T. Montero, J. Hernandez-Borrell, Effects of ciprofloxacin on Escherichia colilipid bilayers: an atomic force microscopy. Langmuir 19, 6922–6927 (2003)CrossRefGoogle Scholar
  82. 82.
    J. Mou, J. Yang, Z. Shao, Atomic force microscopy of cholera toxin B-oligomers bound to bilayers of biologically relevant lipids. J. Mol. Biol. 248, 507–512 (1995)CrossRefGoogle Scholar
  83. 83.
    M.P. Mingeot-Leclercq, M. Deleu, R. Brasseur, Y.F. Dufrene, Atomic force microscopy of supported lipid bilayers. Nat. Protoc. 3(10), 1654–1659 (2008)CrossRefGoogle Scholar
  84. 84.
    G.S. Lorite, T.M. Nobre, M.E. Zaniquelli, E. de Paula, M.A. Cotta, Dibucaine effects on structural and elastic properties of lipid bilayers. Biophys. Chem. 139(2–3), 75–83 (2009)CrossRefGoogle Scholar
  85. 85.
    A.-S. Andersson, K. Glasmästar, D. Sutherland, U. Lidberg, B. Kasemo, Cell adhesion on supported lipid bilayers. J. Biomed. Mater. Res. A 64A(4), 622–629 (2003)CrossRefGoogle Scholar
  86. 86.
    E. Reimhult, K. Kumar, Membrane biosensor platforms using nano- and microporous supports. Trends Biotechnol. 26(2), 82–89 (2008)CrossRefGoogle Scholar
  87. 87.
    H. Benamara, C. Rihouey, T. Jouenne, S. Alexandre, Impact of the biofilm mode of growth on the inner membrane phospholipid composition and lipid domains in Pseudomonas aeruginosa. Biochim. Biophys. Acta Biomembr. 1808(1), 98–105 (2011)CrossRefGoogle Scholar
  88. 88.
    T.M. Nobre, F.J. Pavinatto, L. Caseli, A. Barros-Timmons, P. Dynarowicz-Łątka, O.N. Oliveir, Interactions of bioactive molecules & nanomaterials with Langmuir monolayers as cell membrane models. Thin Solid Films 593, 158–188 (2015)Google Scholar
  89. 89.
    C. Peetla, R. Bhave, S. Vijayaraghavalu, A. Stine, E. Kooijman, V. Labhasetwar, Drug resistance in breast cancer cells: biophysical characterization of and doxorubucin interactions with membrane lipids. Mol. Pharm. 7(6), 2334–2348 (2010)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Bioengineering, Izmir Institute of TechnologyUrla, IzmirTurkey

Personalised recommendations