Skip to main content

Optimal Location of FCL

  • Chapter
  • First Online:
Metaheuristics Algorithms in Power Systems

Part of the book series: Studies in Computational Intelligence ((SCI,volume 822))

Abstract

As a consequence of increased electricity market, the distribution systems have been restated to consider alternative generation sources. These sources with a maximum capacity of less than 100 MW are defined as distributed generation (GD). Most DGs are usually connected to the electrical network without planned and dispatched control, since traditional distribution systems were not designed to consider any other generation sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.B. Naderi, M. Jafari, M. Tarafdar Hagh, Parallel-resonance-type fault current limiter. IEEE Trans. Ind. Electron. 60(7), 2538–2546 (2013)

    Article  Google Scholar 

  2. W. Fei, Y. Zhang, A Novel IGCT-based half-controlled bridge type fault current limiter, in 2006 CES/IEEE 5th International Power Electronics and Motion Control Conference, vol. 2 (2006), pp. 1–5

    Google Scholar 

  3. H. Schmitt, Fault current limiters report on the activities on CIGRE WG A3.16, in 2006 IEEE Power Engineering Society General Meeting, vol. 16 (2006), p. 5

    Google Scholar 

  4. M.M.R. Ahmed, Comparison of the performance of two solid state fault current limiters in the distribution network, in 4th IET International Conference on Power Electronics, Machines and Drives (PEMD 2008) (2008), pp. 772–776

    Google Scholar 

  5. Y.S. Cha, Z. Yang, L.R. Turner, R.B. Poeppel, Analysis of a passive superconducting fault current limiter. IEEE Trans. Appl. Supercond. 8(1), 20–25 (1998)

    Article  Google Scholar 

  6. C.W. A3.10, Fault Current Limiters Report on the Activities of CIGRE WG A3.10 (2006)

    Google Scholar 

  7. W. Group Application and Feasibility of Fault Current Limiters in Power Systems, no. June. CIGRE (2012)

    Google Scholar 

  8. M. Barzegari, A.N. Fard, M.M. Hamidi, A.J. Shahrood, Optimal coordination of directional overcurrent relays in the presence of distributed generation using FCLs. IEEE Int. Energy Conf. 2010, 826–829 (2010)

    Google Scholar 

  9. H. Bahramian Habil, E. Azad-Farsani, H. Askarian Abyaneh, A novel method for optimum fault current limiter placement using particle swarm optimization Algorithm, Int. Trans. Electr. Energy Syst. 25(10), 2124–2132 (2015)

    Article  Google Scholar 

  10. J.H. Teng, C.N. Lu, Optimum fault current limiter placement with search space reduction technique. IET Gener. Transm. Distrib. 4(4), 485 (2010)

    Article  Google Scholar 

  11. J.-H. Teng, C.-N. Lu, Optimum fault current limiter placement, in 2007 International Conference on Intelligent Systems Applications to Power Systems (2007), pp. 1–6

    Google Scholar 

  12. D.R. Arikkat, P. Reji, Location optimization of fault current limiter, in Proceedings of International Conference on Material and Future—Innovative Material Production of Applications ICFM 2013, (2013), pp. 484–487

    Google Scholar 

  13. W.-W. Kim, S.-Y. Kim, J.-O. Kim, SFCL location selection considering reliability indices. World Acad. Sci. Eng. Technol. 4(9), 405–409 (2010)

    Google Scholar 

  14. G. Cakal, F. Gül, M. Bagriyanik, The effect of fault current limiters on distribution systems with wind turbine generators 1. Int. J. Renew. Energy Res. 3(1), 1–6 (2013)

    Google Scholar 

  15. M. Nagata, K. Tanaka, H. Taniguchi, FCL location selection in large scale power system. IEEE Trans. Appl. Supercond. 11(1), 2489–2494 (2001)

    Article  Google Scholar 

  16. P. Yu, B. Venkatesh, A. Yazdani, B.N. Singh, Optimal location and sizing of fault current limiters in mesh networks using iterative mixed integer nonlinear programming. IEEE Trans. Power Syst. 31(6), 4776–4783 (2016)

    Article  Google Scholar 

  17. A. Golzarfar, A.R. Sedighi, A. Asadi, Optimal placement and sizing of fault current limiter in a real network: a case study. Int. J. Eng. 28(3), 402–409 (2015)

    Google Scholar 

  18. K. Hongesombut, Y. Mitani, K. Tsuji, Optimal location assignment and design of superconducting fault current limiters applied to loop power systems. IEEE Trans. Appl. Supercond. 13(2), 1828–1831 (2003)

    Article  Google Scholar 

  19. S.A.A. Shahriari, A.Y. Varjani, M.R. Haghifam, Cost reduction of distribution network protection in presence of distributed generation using optimized fault current limiter allocation. Int. J. Electr. Power Energy Syst. 43(1), 1453–1459 (2012)

    Article  Google Scholar 

  20. K. Mazlumi, Optimal protection coordination for micro grids with grid connected and islanded capability, Int. J. “Tech. Phys. Probl. Eng. 6, 204–209 (2014)

    Google Scholar 

  21. A. Elmitwally, E. Gouda, S. Eladawy, Optimal allocation of fault current limiters for sustaining overcurrent relays coordination in a power system with distributed generation. Alexandria Eng. J. 54(4), 1077–1089 (2015)

    Article  Google Scholar 

  22. A. Elmitwally, E. Gouda, S. Eladawy, Optimal application of fault current limiters for assuring overcurrent relays coordination with distributed generations. Arab. J. Sci. Eng. 41(9), 3381–3397 (2016)

    Article  Google Scholar 

  23. S. Zare, A. Khazali, S.M. Hashemi, F. Katebi, R. Khalili, Fault current limiter optimal placement by harmony search algorithm, in 22nd International Conference and Exhibition on Electricity Distribution, vol. 124 (2013), pp. 10–13

    Google Scholar 

  24. W.G. A3.16, Guideline of the Impacts of Fault Current Limiting Devices on Protection Systems, no. February. CIGRE (2008)

    Google Scholar 

  25. H. Arai, M. Inaba, T. Ishigohka, H. Tanaka, K. Arai, M. Furuse, M. Umeda, Fundamental characteristics of superconducting fault current limiter using LC resonance circuit. IEEE Trans. Appl. Supercond. 16(2), 642–645 (2006)

    Article  Google Scholar 

  26. S. Zissu, D. Shein, The influence of fault current limiting in power systems on transient recovery voltage, in Proceedings of 19th Convention of Electrical and Electronics Engineers in Israel (1996), pp. 479–482

    Google Scholar 

  27. H.G. Sarmiento, A fault current limiter based on an LC resonant circuit: design, scale model and prototype field tests, in 2007 iREP Symposium—Bulk Power System Dynamic and Control—VII. Revitalizing Operational Reliability (2007), pp. 1–5, 2007

    Google Scholar 

  28. C.S. Chang, P.C. Loh, Designs synthesis of resonant fault current limiter for voltage sag mitigation and current limitation, in 2000 IEEE Power Engineering Society Winter Meeting. Conference Proceedings, vol. 4 (2000), pp. 2482–2487

    Google Scholar 

  29. G. Chen, D. Jiang, Z. Lu, Z. Wu, A new proposal for solid state fault current limiter and its control strategies, in IEEE Power Engineering Society General Meeting, vol. 2 (2004) pp. 1468–1473

    Google Scholar 

  30. H. Javadi, Fault current limiter using a series impedance combined with bus sectionalizing circuit breaker. Int. J. Electr. Power Energy Syst. 33(3), 731–736 (2011)

    Article  Google Scholar 

  31. F. Tosato, S. Quaia, Reducing voltage sags through fault current limitation. IEEE Trans. Power Deliv. 16(1), 12–17 (2001)

    Article  Google Scholar 

  32. W.G. A3.10, Fault Current Limiters in Electrical Medium and High Voltage Systems (2003)

    Google Scholar 

  33. M.A. Hannan, A. Mohamed, Performance evaluation of solid state fault current limiters in electric distribution system, in Proceedings Student Conference on Research and Development, 2003. SCORED 2003 (2003), pp. 245–250

    Google Scholar 

  34. X. Zhang, P. Liu, The research of resonant fault current limiter based on electromagnetic transient simulation, in IEEE PES Innovations in Smart Grid Technologies (2012) pp. 1–4

    Google Scholar 

  35. IEEE Std C37.112-1996, IEEE Standard Inverse-Time Characteristic Equations for Overcurrent Relays. Power Syst. Relaying Comm. IEE Power Eng. Soc. (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Cuevas .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cuevas, E., Barocio Espejo, E., Conde Enríquez, A. (2019). Optimal Location of FCL. In: Metaheuristics Algorithms in Power Systems. Studies in Computational Intelligence, vol 822. Springer, Cham. https://doi.org/10.1007/978-3-030-11593-7_7

Download citation

Publish with us

Policies and ethics