Skip to main content

Abstract

At the dawn of the 21st century, medical robotics were introduced into clinical practice. This chapter outlines the development of robotics in the context of advancements in transanal surgery. It details how the field of robotic TAMIS was developed and reviews progress to date with this technique, including the application of transanal robotics for taTME. Robotic TAMIS is poised to evolve dramatically as new technology, automization, and NOTES-based, single-port robotic platforms emerge from concept to operating theater.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marescaux J, Leroy J, Rubino F, Smith M, Vix M, Simone M, Mutter D. Transcontinental robot-assisted remote telesurgery: feasibility and potential applications. Ann Surg. 2002;235(4):487.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Marescaux J, Leroy J, Gagner M, Rubino F, Mutter D, Vix M, Butner SE, Smith MK. Transatlantic robot-assisted telesurgery. Nature. 2001;413(6854):379.

    Article  CAS  PubMed  Google Scholar 

  3. Kappert U, Cichon R, Schneider J, Gulielmos V, Tugtekin SM, Matschke K, Schramm I, Schueler S. Closed-chest coronary artery surgery on the beating heart with the use of a robotic system. J Thorac Cardiovasc Surg. 2000;120(4):809–11.

    Article  CAS  PubMed  Google Scholar 

  4. Falk V, Diegler A, Walther T, Autschbach R, Mohr FW. Developments in robotic cardiac surgery. Curr Opin Cardiol. 2000;15(6):378–87.

    Article  CAS  PubMed  Google Scholar 

  5. Chitwood WR, Nifong LW, Elbeery JE, Chapman WH, Albrecht R, Kim V, Young JA. Robotic mitral valve repair: trapezoidal resection and prosthetic annuloplasty with the da Vinci surgical system. J Thorac Cardiovasc Surg. 2000;120(6):1171–2.

    Article  PubMed  Google Scholar 

  6. Mohr FW, Falk V, Diegeler A, Walther T, Gummert JF, Bucerius J, Jacobs S, Autschbach R. Computer-enhanced “robotic” cardiac surgery: experience in 148 patients. J Thorac Cardiovasc Surg. 2001;121(5):842–53.

    Article  CAS  PubMed  Google Scholar 

  7. Zenati MA. Robotic heart surgery. Cardiol Rev. 2001;9(5):287–94.

    Article  CAS  PubMed  Google Scholar 

  8. Binder J, Kramer W. Robotically-assisted laparoscopic radical prostatectomy. BJU Int. 2001;87(4):408–10.

    Article  CAS  PubMed  Google Scholar 

  9. Pasticier G, Rietbergen JB, Guillonneau B, Fromont G, Menon M, Vallancien G. Robotically assisted laparoscopic radical prostatectomy: feasibility study in men. Eur Urol. 2001;40(1):70–4.

    Article  CAS  PubMed  Google Scholar 

  10. Abbou CC, Hoznek A, Salomon L, Olsson LE, Lobontiu A, Saint F, Cicco A, Antiphon P, Chopin D. Laparoscopic radical prostatectomy with a remote controlled robot. J Urol. 2001;165(6):1964–6.

    Article  CAS  PubMed  Google Scholar 

  11. Weber PA, Merola S, Wasielewski A, Ballantyne GH. Telerobotic-assisted laparoscopic right and sigmoid colectomies for benign disease. Dis Colon Rectum. 2002;45(12):1689–96.

    Article  PubMed  Google Scholar 

  12. Talamini M, Campbell K, Stanfield C. Robotic gastrointestinal surgery: early experience and system description. J Laparoendosc Adv Surg Tech. 2002;12(4):225–32.

    Article  Google Scholar 

  13. Baek SJ, Kwak JM, Kim J, Kim SH, Park S, Korean Association of Robotic Surgeons (KAROS) Study Group. Robotic rectal surgery in Korea: analysis of a nationwide registry. Int J Med Robot. 2018; https://doi.org/10.1002/rcs.1896. [Epub ahead of print].

  14. Kwak JM, Kim SH. Robotic surgery for rectal cancer: an update in 2015. Cancer Res Treat. 2016;48(2):427–35. https://doi.org/10.4143/crt.2015.478. Epub 2016 Feb 3.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ngu JC, Tsang CB, Koh DC. The da Vinci Xi: a review of its capabilities, versatility, and potential role in robotic colorectal surgery. Robot Surg Res Rev. 2017;4:77–85. https://doi.org/10.2147/RSRR.S119317.

    Article  Google Scholar 

  16. Kim J, Baek SJ, Kang DW, Roh YE, Lee JW, Kwak HD, Kwak JM, Kim SH. Robotic resection is a good prognostic factor in rectal cancer compared with laparoscopic resection: long-term survival analysis using propensity score matching. Dis Colon Rectum. 2017;60(3):266–73. https://doi.org/10.1097/DCR.0000000000000770.

    Article  PubMed  Google Scholar 

  17. Yoo BE, Cho JS, Shin JW, Lee DW, Kwak JM, Kim J, Kim SH. Robotic versus laparoscopic intersphincteric resection for low rectal cancer: comparison of the operative, oncological, and functional outcomes. Ann Surg Oncol. 2015;22(4):1219–25. https://doi.org/10.1245/s10434-014-4177-5. Epub 2014 Oct 18.

    Article  PubMed  Google Scholar 

  18. Baek SJ, Kim CH, Cho MS, Bae SU, Hur H, Min BS, Baik SH, Lee KY, Kim NK. Robotic surgery for rectal cancer can over- come difficulties associated with pelvic anatomy. Surg Endosc. 2015;29(6):1419–24. https://doi.org/10.1007/s00464-014-3818-x.

    Article  PubMed  Google Scholar 

  19. Jayne D, Pigazzi A, Marshall H, Croft J, Corrigan N, Copeland J, Quirke P, West N, Rautio T, Thomassen N, Tilney H, Gudgeon M, Bianchi PP, Edlin R, Hulme C, Brown J. Effect of robotic- assisted vs conventional laparoscopic surgery on risk of conversion to open laparotomy among patients undergoing resection for rectal cancer. JAMA. 2017;318(16):1569–80. https://doi.org/10.1001/jama.2017.7219.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Pai A, Melich G, Marecik SJ, Park JJ, Prasad LM. Current status of robotic surgery for rectal cancer: a bird’s eye view. J Minim Access Surg. 2015;11(1):29.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Pai A, Marecik SJ, Park JJ, Melich G, Sulo S, Prasad LM. Oncologic and clinicopathologic outcomes of robot-assisted total mesorectal excision for rectal cancer. Dis Colon Rectum. 2015;58(7):659–67.

    Article  PubMed  Google Scholar 

  22. Pigazzi A, Luca F, Patriti A, et al. Multicentric study on robotic tumor-specific mesorectal excision for the treatment of rectal cancer. Ann Surg Oncol. 2010;17:1614–20.

    Article  PubMed  Google Scholar 

  23. Atallah S, Albert M, Larach S. Transanal minimally invasive surgery: a giant leap forward. Surg Endosc. 2010;24(9):2200–5.

    Article  PubMed  Google Scholar 

  24. Kaouk JH, Goel RK, Haber GP, Crouzet S, Stein RJ. Robotic single-port transumbilical surgery in humans: initial report. BJU Int. 2009;103(3):366–9.

    Article  PubMed  Google Scholar 

  25. Wren SM, Curet MJ. Single-port robotic cholecystectomy: results from a first human use clinical study of the new da Vinci single-site surgical platform. Arch Surg. 2011;146(10):1122–7.

    Article  PubMed  Google Scholar 

  26. Kroh M, El-Hayek K, Rosenblatt S, Chand B, Escobar P, Kaouk J, Chalikonda S. First human surgery with a novel single-port robotic system: cholecystectomy using the da Vinci single-site platform. Surg Endosc. 2011;25(11):3566.

    Article  PubMed  Google Scholar 

  27. Atallah SB, Albert MR, deBeche-Adams TH, Larach SW. Robotic transanal minimally invasive surgery in a cadaveric model. Tech Coloproctol. 2011;15(4):461–4. https://doi.org/10.1007/s10151-011-0762-9. Epub 2011 Sep 28.

    Article  CAS  PubMed  Google Scholar 

  28. Atallah S, Keller D. Why the conventional parks transanal excision for early stage rectal cancer should be abandoned. Dis Colon Rectum. 2015;58(12):1211–4. https://doi.org/10.1097/DCR.0000000000000470.

    Article  PubMed  Google Scholar 

  29. Moore JS, Cataldo PA, Osler T, Hyman NH. Transanal endoscopic microsurgery is more effective than traditional transanal excision for resection of rectal masses. Dis Colon Rectum. 2008;51:1026–30.

    Article  PubMed  Google Scholar 

  30. de Graaf EJ, Burger JW, van Ijsseldijk AL, Tetteroo GW, Dawson I, Hop WC. Transanal endoscopic microsurgery is superior to transanal excision of rectal adenomas. Color Dis. 2011;13:762–7.

    Article  Google Scholar 

  31. Christoforidis D, Cho HM, Dixon MR, Mellgren AF, Madoff RD, Finne CO. Transanal endoscopic microsurgery versus conventional transanal excision for patients with early rectal cancer. Ann Surg. 2009;249:776–82.

    Article  PubMed  Google Scholar 

  32. Carrara A, Mangiola D, Motter M, et al. Glove port technique for transanal endoscopic microsurgery. Int J Surg Oncol. 2012;2012:383025.

    Google Scholar 

  33. Hompes R, Rauh SM, Hagen ME, Mortensen NJ. Preclinical cadaveric study of transanal endoscopic da Vinci® surgery. Br J Surg. 2012;99(8):1144–8. https://doi.org/10.1002/bjs.8794. Epub 2012 May 22.

  34. Atallah S. Robotic transanal minimally invasive surgery for local excision of rectal neoplasms (Br J Surg 2014; 101: 578–581). Br J Surg. 2014;101(5):581. https://doi.org/10.1002/bjs.9467.

    Article  CAS  PubMed  Google Scholar 

  35. Marks J, Ng S, Mak T. Robotic transanal surgery (RTAS) with utilization of a next-generation single-port system: a cadaveric feasibility study. Tech Coloproctol. 2017;21(7):541–5. https://doi.org/10.1007/s10151-017-1655-3. Epub 2017 Jul 14.

    Article  CAS  PubMed  Google Scholar 

  36. Atallah S, Parra-Davila E, DeBeche-Adams T, Albert M, Larach S. Excision of a rectal neoplasm using robotic transanal surgery (RTS): a description of the technique. Tech Coloproctol. 2012;16(5):389–92. https://doi.org/10.1007/s10151-012-0833-6. Epub 2012 May 15.

    Article  CAS  PubMed  Google Scholar 

  37. Bardakcioglu O. Robotic transanal access surgery. Surg Endosc. 2013;27(4):1407–9. https://doi.org/10.1007/s00464-012-2581-0. Epub 2012 Dec 13.

    Article  PubMed  Google Scholar 

  38. Buchs NC, Pugin F, Volonte F, Hagen ME, Morel P, Ris F. Robotic transanal endoscopic microsurgery: technical details for the lateral approach. Dis Colon Rectum. 2013;56(10):1194–8. https://doi.org/10.1097/DCR.0b013e3182a2ac84.

    Article  PubMed  Google Scholar 

  39. Martin-Perez B, Andrade-Ribeiro GD, Hunter L, Atallah S. A systematic review of transanal minimally invasive surgery (TAMIS) from 2010 to 2013. Tech Coloproctol. 2014;18(9):775–88. https://doi.org/10.1007/s10151-014-1148-6. Epub 2014 May 7.

    Article  CAS  PubMed  Google Scholar 

  40. Hompes R, Rauh SM, Ris F, Tuynman JB, Mortensen NJ. Robotic transanal minimally invasive surgery for local excision of rectal neoplasms. Br J Surg. 2014;101(5):578–81. https://doi.org/10.1002/bjs.9454.

    Article  CAS  PubMed  Google Scholar 

  41. Atallah S, Martin-Perez B, Parra-Davila E, deBeche-Adams T, Nassif G, Albert M, Larach S. Robotic transanal surgery for local excision of rectal neoplasia, transanal total mesorectal excision, and repair of complex fistulae: clinical experience with the first 18 cases at a single institution. Tech Coloproctol. 2015;19(7):401–10. https://doi.org/10.1007/s10151-015-1283-8. Epub 2015 Feb 24.

    Article  CAS  PubMed  Google Scholar 

  42. Vallribera Valls F, Espín Bassany E, Jiménez-Gómez LM, Ribera Chavarría J, Armengol Carrasco M. Robotic transanal endoscopic microsurgery in benign rectal tumour. J Robot Surg. 2014;8(3):277–80. https://doi.org/10.1007/s11701-013-0429-9. Epub 2013 Aug 10.

    Article  PubMed  Google Scholar 

  43. Atallah S, Quinteros F, Martin-Perez B, Larach S. Robotic transanal surgery for local excision of rectal neoplasms. J Robot Surg. 2014;8(2):193–4. https://doi.org/10.1007/s11701-014-0463-2. Epub 2014 Apr 22.

    Article  PubMed  Google Scholar 

  44. Harr JN, Obias V. Robotic-assisted transanal excision of a large rectal mass–a video vignette. Color Dis. 2016;18(1):107–8. https://doi.org/10.1111/codi.13146.

    Article  CAS  Google Scholar 

  45. Erenler I, Aytac E, Bilgin IA, Baca B, Hamzaoglu I, Karahasanoglu T. Robotic transanal minimally invasive surgery (R-TAMIS) with the da Vinci Xi System – a video vignette. Color Dis. 2017;19(4):401. https://doi.org/10.1111/codi.13638.

    Article  CAS  Google Scholar 

  46. Gómez Ruiz M, Cagigas Fernández C, Alonso Martín J, Cristobal Poch L, Manuel Palazuelos C, Barredo Cañibano FJ, Gómez Fleitas M, Castillo Diego J. Robotic assisted transanal polypectomies: is there any indication? Cir Esp. 2017;95(10):601–9. https://doi.org/10.1016/j.ciresp.2017.09.006. Epub 2017 Nov 14.

    Article  PubMed  Google Scholar 

  47. Atallah S, Martin-Perez B, Pinan J, Quinteros F, Schoonyoung H, Albert M, Larach S. Robotic transanal total mesorectal excision: a pilot study. Tech Coloproctol. 2014;18(11):1047–53. https://doi.org/10.1007/s10151-014-1181-5. Epub 2014 Jun 24.

    Article  CAS  PubMed  Google Scholar 

  48. Kuo L, Ngu JC, Tong Y, et al. Combined robotic transanal total mesorectal excision (R-taTME) and single-site plus one-port (R-SSPO) technique for ultra-low rectal surgery—initial experience with a new operation approach. Int J Color Dis. 2017;32(2):249–54. https://doi.org/10.1007/s00384-016-2686-3.

    Article  Google Scholar 

  49. Gómez Ruiz M, Parra IM, Palazuelos CM, Martín JA, Fernández CC, Diego JC, Fleitas MG. Robotic-assisted laparoscopic transanal total mesorectal excision for rectal cancer: a prospective pilot study. Dis Colon Rectum. 2015;58(1):145–53. https://doi.org/10.1097/DCR.0000000000000265.

    Article  PubMed  Google Scholar 

  50. Atallah S. Assessment of a flexible robotic system for endoluminal applications and transanal total mesorectal excision (taTME): could this be the solution we have been searching for? Tech Coloproctol. 2017;21(10):809–14. https://doi.org/10.1007/s10151-017-1697-6. Epub 2017 Oct 24.

    Article  CAS  PubMed  Google Scholar 

  51. Kuo LJ, Ngu JC, Tong YS, Chen CC. Combined robotic transanal total mesorectal excision (R-taTME) and single-site plus one-port (R-SSPO) technique for ultra-low rectal surgery-initial experience with a new operation approach. Int J Color Dis. 2017;32(2):249–54. https://doi.org/10.1007/s00384-016-2686-3. Epub 2016 Oct 15.

    Article  Google Scholar 

  52. Laird R, Obias VJ. Robotic transanal fistula repair – a video vignette. Color Dis. 2015;17(1):90. https://doi.org/10.1111/codi.12799.

    Article  CAS  Google Scholar 

  53. Stack ME, Umanskiy K. Robotic-assisted transanal repair of a rectovaginal fistula. J Gastrointest Surg. 2016;20(12):2106. Epub 2016 May 24.

    Article  PubMed  Google Scholar 

  54. Atallah S, Nassif G, Polavarapu H, deBeche-Adams T, Ouyang J, Albert M, Larach S. Robotic-assisted transanal surgery for total mesorectal excision (RATS-TME): a description of a novel surgical approach with video demonstration. Tech Coloproctol. 2013;17(4):441–7. https://doi.org/10.1007/s10151-013-1039-2. Epub 2013 Jun 26.

    Article  CAS  PubMed  Google Scholar 

  55. Gomez Ruiz M, Martin Parra I, Calleja Iglesias A, Stein H, Sprinkle S, Manuel Palazuelos C, Alonso Martin J, Cagigas Fernandez C, Castillo Diego J, Gomez Fleitas M. Preclinical cadaveric study of transanal robotic proctectomy with total mesorectal excision combined with laparoscopic assistance. Int J Med Robot. 2015;11(2):188–93. https://doi.org/10.1002/rcs.1581. Epub 2014 Feb 27.

    Article  CAS  PubMed  Google Scholar 

  56. Atallah S, Drake J, Martin-Perez B, Kang C, Larach S. Robotic transanal total mesorectal excision with intersphincteric dissection for extreme distal rectal cancer: a video demonstration. Tech Coloproctol. 2015;19(7):435. https://doi.org/10.1007/s10151-015-1304-7. Epub 2015 May 12.

    Article  CAS  PubMed  Google Scholar 

  57. Son J, Cho CN, Kim KG, Chang TY, Jung H, Kim SC, Kim MT, Yang N, Kim TY, Sohn DK. A novel semi-automatic snake robot for natural orifice transluminal endoscopic surgery: preclinical tests in animal and human cadaver models (with video). Surg Endosc. 2015;29(6):1643–7. https://doi.org/10.1007/s00464-014-3854-6. Epub 2014 Oct 8.

    Article  PubMed  Google Scholar 

  58. Melani AF, Diana M, Marescaux J. The quest for precision in transanal total mesorectal excision. Tech Coloproctol. 2016;20(1):11–8.

    Article  Google Scholar 

  59. Hompes R. Robotics and transanal minimal invasive surgery (TAMIS): the “sweet spot” for robotics in colorectal surgery? Tech Coloproctol. 2015;19(7):377–8. https://doi.org/10.1007/s10151-015-1326-1. Epub 2015 Jun 25.

    Article  CAS  PubMed  Google Scholar 

  60. Mohd Azman ZA, Kim SH. A review on robotic surgery in rectal cancer. Transl Gastroenterol Hepatol. 2016;1:5. https://doi.org/10.21037/tgh.2016.03.16. eCollection 2016.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sam Atallah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Atallah, S., Buchs, N.C., Kim, SH. (2019). The Evolution of Robotic TAMIS. In: Atallah, S. (eds) Transanal Minimally Invasive Surgery (TAMIS) and Transanal Total Mesorectal Excision (taTME). Springer, Cham. https://doi.org/10.1007/978-3-030-11572-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11572-2_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11571-5

  • Online ISBN: 978-3-030-11572-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics