Skip to main content

A Small-Gain Method for the Design of Decentralized Stabilizing Controllers for Interconnected Systems with Delays

  • Chapter
  • First Online:

Part of the book series: Advances in Delays and Dynamics ((ADVSDD,volume 10))

Abstract

In this chapter, the decentralized, practical input-to-state stabilization of a class of interconnected systems, affected by time-delays in both the internal variables and in the communication channels, is considered. The Artstein–Sontag methodology of control Lyapunov functions, extended to systems with delays by control Lyapunov-Krasovskii functionals, is exploited in connection with the small-gain methods for retarded systems. A constructive methodology for the design of decentralized control laws in the presence of actuator disturbances is provided. Control Lyapunov-Krasovskii functionals for only subsystems are considered, thus reducing the difficulty with respect to finding an overall functional. A decentralized controller is provided by means of a small-gain condition, by which practical input-to-state stability with respect to actuator disturbances is guaranteed. If the disturbances are bounded, the controller allows to drive the system variables to an arbitrarily small neighborhood of the origin, by suitably tuning a control parameter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bekiaris-Liberis, N., Jankovic, M., Krstic, M.: Compensation of state-dependent state delay for nonlinear systems. Syst. Control Lett. 61(8), 849–856 (2012)

    Article  MathSciNet  Google Scholar 

  2. Bekiaris-Liberis, N., Krstic, M.: Compensation of time-varying input and state delays for nonlinear systems. J. Dyn. Sys. Meas. Control 134(1) (2012)

    Google Scholar 

  3. Bekiaris-Liberis, N., Krstic, M.: Compensation of state-dependent input delay for nonlinear systems. IEEE Trans. Autom. Control 58(2), 275–289 (2013)

    Article  MathSciNet  Google Scholar 

  4. Califano, C., Marquez-Martinez, L.A., Moog, C.H.: Extended Lie brackets for nonlinear time-delay systems. IEEE Trans. Autom. Control 56(9), 2213–2218 (2011)

    Google Scholar 

  5. Califano, C., Marquez-Martinez, L.A., Moog, C.H.: Linearization of time-delay systems by input-output injection and output transformation. Automatica 49(6), 1932–1940 (2013)

    Article  MathSciNet  Google Scholar 

  6. Driver, R.D.: Existence and stability of solutions of a delay-differential system. Arch. Rat. Mech. Anal. 10(1), 401–426 (1962)

    Article  MathSciNet  Google Scholar 

  7. Esfanjani, R.M., Nikravesh, S.K.Y.: Stabilising predictive control of non-linear time-delay systems using control Lyapunov- Krasovskii functionals. IET Control Theory Appl. 3(10), 1395–1400 (2009)

    Article  MathSciNet  Google Scholar 

  8. Freeman, R., Kokotovic, P.: Robust Nonlinear Control Design - State-Space and Lyapunov Techniques. Birkhauser, Boston (2008)

    MATH  Google Scholar 

  9. Germani, A., Manes, C., Pepe, P.: Local asymptotic stability for nonlinear state feedback delay systems. Kybernetica 31(1), 31–42 (2000)

    MathSciNet  MATH  Google Scholar 

  10. Germani, A., Manes, C., Pepe, P.: Input-output linearization with delay cancellation for nonlinear delay systems: the problem of the internal stability. Int. J. Robust Nonlinear Control 13(9), 909–937 (2003)

    Article  MathSciNet  Google Scholar 

  11. Hua, C., Guan, X., Shi, P.: Robust stabilization of a class of nonlinear time-delay systems. Appl. Math. Comput. 155(3), 737–752 (2004)

    MathSciNet  MATH  Google Scholar 

  12. Ito, H., Pepe, P., Jiang, Z.-P.: Decentralized robustification of interconnected time-delay systems based on integral input-to-state stability. In: Vyhlidal, T., Lafay, J.F., Sipahi, R. (eds.) Delay Systems, From Theory to Numerics and Applications, volume 1 of Advances in Delays and Dynamics, pp. 199–212. Springer (2013)

    Google Scholar 

  13. Ito, H., Jiang, Z.-P., Pepe, P.: Construction of Lyapunov-Krasovskii functionals for networks of iISS retarded systems in small-gain formulation. Automatica 49(11), 3246–3257 (2013)

    Article  MathSciNet  Google Scholar 

  14. Ito, H., Pepe, P., Jiang, Z.-P.: A small-gain condition for iISS of interconnected retarded systems based on Lyapunov-Krasovskii functionals. Automatica 46(10), 1646–1656 (2010)

    Article  MathSciNet  Google Scholar 

  15. Jankovic, M.: Extension of control Lyapunov functions to time-delay systems. In: Proceedings of the 39th IEEE Conference on Decision and Control, vol. 5, pp. 4403–4408 (2000)

    Google Scholar 

  16. Jankovic, M.: Control Lyapunov-Razumikhin functions and robust stabilization of time delay systems. IEEE Trans. Autom. Control 46(7), 1048–1060 (2001)

    Article  MathSciNet  Google Scholar 

  17. Jiang, Z.-P., Mareels, I.M.Y., Wang, Y.: A Lyapunov formulation of the nonlinear small-gain theorem for interconnected ISS systems. Automatica 32(8), 1211–1215 (1996)

    Google Scholar 

  18. Jiang, Z.P., Teel, A.R., Praly, L.: Small-gain theorem for ISS systems and applications. Math. Control. Signals Syst. 7(2), 95–120 (1994)

    Article  MathSciNet  Google Scholar 

  19. Karafyllis, I.: Lyapunov theorems for systems described by retarded functional differential equations. Nonlinear Anal. Theory Methods Appl. 64(3), 590–617 (2006)

    Article  MathSciNet  Google Scholar 

  20. Karafyllis, I., Jiang, Z.-P.: Stability and Stabilization of Nonlinear Systems. Springer, Berlin (2011)

    Google Scholar 

  21. Karafyllis, I., Jiang, Z.-P.: Necessary and sufficient Lyapunov-like conditions for robust nonlinear stabilization. ESAIM: COCV 16(4), 887–928 (2010)

    Google Scholar 

  22. Karafyllis, I., Pepe, P., Jiang, Z.-P.: Global output stability for systems described by retarded functional differential equations: Lyapunov characterizations. Eur. J. Control 14(6), 516–536 (2008)

    Article  MathSciNet  Google Scholar 

  23. Karafyllis, I., Pepe, P., Jiang, Z.-P.: Input-to-output stability for systems described by retarded functional differential equations. Eur. J. Control 14(6), 539–555 (2008)

    Article  MathSciNet  Google Scholar 

  24. Kim, A.V.: On the Lyapunov’s functionals method for systems with delays. Nonlinear Anal. Theory Methods Appl. 28(4), 673–687 (1997)

    Google Scholar 

  25. Kim, A.V.: Functional Differential Equations, Application of i-Smooth Calculus. Kluwer Academic Publishers, Dordrecht (1999)

    Book  Google Scholar 

  26. Lien, C.-H.: Global exponential stabilization for several classes of uncertain nonlinear systems with time-varying delay. Nonlinear Dyn. Syst. Theory 4(1), 15–30 (2004)

    MathSciNet  MATH  Google Scholar 

  27. Marquez-Martinez, L.A., Moog, C.H.: Input-output feedback linearization of time-delay systems. IEEE Trans. Autom. Control 49(5), 781–785 (2004)

    Article  MathSciNet  Google Scholar 

  28. Oguchi, T., Watanabe, A., Nakamizo, T.: Input-output linearization of retarded non-linear systems by using an extension of Lie derivative. Int. J. Control 75(8), 582–590 (2002)

    Google Scholar 

  29. Pepe, P.: Adaptive output tracking for a class of nonlinear time delay systems. Int. J. Adapt. Control. Signal Process. 18(6), 489–503 (2004)

    Google Scholar 

  30. Pepe, P.: On Liapunov-Krasovskii functionals under carathéodory conditions. Automatica 43(4), 701–706 (2007)

    Google Scholar 

  31. Pepe, P.: The problem of the absolute continuity for Lyapunov-Krasovskii functionals. IEEE Trans. Autom. Control 52(5), 953–957 (2007)

    Article  MathSciNet  Google Scholar 

  32. Pepe, P.: Input-to-state stabilization of stabilizable, time-delay, control-affine, nonlinear systems. IEEE Trans. Autom. Control 54(7), 1688–1693 (2009)

    Article  MathSciNet  Google Scholar 

  33. Pepe, P.: On Sontag’s formula for the input-to-state practical stabilization of retarded control-affine systems. Syst. Control Lett. 62(11), 1018–1025 (2013)

    Article  MathSciNet  Google Scholar 

  34. Pepe, P.: Stabilization of retarded systems of neutral type by control Lyapunov-Krasovskii functionals. Syst. Control Lett. 94, 142–151 (2016)

    Article  MathSciNet  Google Scholar 

  35. Pepe, P., Ito, H.: On saturation, discontinuities, and delays, in iISS and ISS feedback control redesign. IEEE Trans. Autom. Control 57(5), 1125–1140 (2012)

    Article  MathSciNet  Google Scholar 

  36. Pepe, P., Ito, H., Jiang, Z.-P.: Design of decentralized, practically stabilizing controllers for a class of interconnected retarded systems. In: 53rd IEEE Conference on Decision and Control, pp. 1209–1214 (2014)

    Google Scholar 

  37. Pepe, P., Jiang, Z.-P.: A Lyapunov-Krasovskii methodology for ISS and iISS of time-delay systems. Syst. Control Lett. 55(12), 1006–1014 (2006)

    Article  MathSciNet  Google Scholar 

  38. Rodríguez-Guerrero, L., Santos-Sánchez, O., Mondié, S.: A constructive approach for an optimal control applied to a class of nonlinear time delay systems. J. Process Control 40, 35–49 (2016)

    Article  Google Scholar 

  39. Sepulchre, R., Janković, M., Kokotović, P.: Constructive nonlinear control. Springer, New York (1997)

    Book  Google Scholar 

  40. Sontag, E.D.: Smooth stabilization implies coprime factorization. IEEE Trans. Autom. Control 34(4), 435–443 (1989)

    Article  MathSciNet  Google Scholar 

  41. Sontag, E.D.: A ‘universal’ construction of Artstein’s theorem on nonlinear stabilization. Syst. Control Lett. 13(2), 117–123 (1989)

    Google Scholar 

  42. Liu, T., Jiang, Z.-P., Hill, D.J.: Nonlinear Control of Dynamic Networks. CRC, Boston (2017)

    Google Scholar 

  43. Zhang, X., Cheng, Z.: Global stabilization of a class of time-delay nonlinear systems. Int. J. Syst. Sci. 36(8), 461–468 (2005)

    Article  MathSciNet  Google Scholar 

  44. Zhu, Q., Hu, G.-D.: Converse Lyapunov theorem of input-to-state stability for time-delay systems. Acta Autom. Sin. 36(8), 1131–1136 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work of P. Pepe has been supported in part by the MIUR-PRIN 2009 grant N. 2009J7FWLX002 and by the Center of Excellence for Research DEWS, Italy. The work of Z. P. Jiang has been supported in part by the NSF under Grant ECCS-1501044.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierdomenico Pepe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pepe, P., Ito, H., Jiang, ZP. (2019). A Small-Gain Method for the Design of Decentralized Stabilizing Controllers for Interconnected Systems with Delays. In: Valmorbida, G., Seuret, A., Boussaada, I., Sipahi, R. (eds) Delays and Interconnections: Methodology, Algorithms and Applications. Advances in Delays and Dynamics, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-030-11554-8_7

Download citation

Publish with us

Policies and ethics