Skip to main content

A Delayed Mass-Action Model for the Transcriptional Control of Hmp, an NO Detoxifying Enzyme, by the Iron-Sulfur Protein FNR

  • Chapter
  • First Online:
Delays and Interconnections: Methodology, Algorithms and Applications

Part of the book series: Advances in Delays and Dynamics ((ADVSDD,volume 10))

  • 495 Accesses

Abstract

In Escherichia coli, an enzyme called Hmp is a key contributor to the detoxification of nitric oxide (NO). In the absence of NO, the transcription of the hmp gene is repressed by an iron-sulfur protein called FNR. NO damages the iron-sulfur cluster of FNR, weakening the repression of hmp and allowing expression of Hmp to high levels. A delayed mass-action model for the Hmp-FNR network has been developed. This model has 33 parameters, all but three of which were estimated. One of the unknown parameters, the rate of NO inflow into the cell’s cytoplasm, was used as a control parameter in a study of the steady-state structure of this model. This study revealed bistability across a wide range of inflow rates, oxygen concentrations, and values of the unknown parameters. The bistability is caused by substrate inhibition of Hmp by NO, which allows for a high-NO steady state, which would likely be lethal, to coexist with a biologically desirable low-NO steady state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aguda, B.D.: Emergent properties of coupled enzyme reaction systems. 1. Switching and clustering behaviour. Biophys. Chem. 61, 1–7 (1996)

    Article  Google Scholar 

  2. an der Heiden, U.: Delays in physiological systems. J. Math. Biol. 8, 345–364 (1979)

    Article  MathSciNet  Google Scholar 

  3. Bakshi, S., Siryaporn, A., Goulian, M., Weisshaar, J.C.: Superresolution imaging of ribosomes and RNA polymerase in live Escherichia coli cells. Mol. Microbiol. 85, 21–38 (2012)

    Google Scholar 

  4. Barrio, M., Burrage, K., Leier, A., Tian, T.: Oscillatory regulation of Hes1: discrete stochastic delay modelling and simulation. PLoS Comput. Biol. 2, e117 (2006)

    Article  Google Scholar 

  5. Bennett, B.D., Kimball, E.H., Gao, M., Osterhout, R., Van Dien, S.J., Rabinowitz, J.D.: Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nat. Chem. Biol. 5, 593–599 (2009)

    Google Scholar 

  6. Bliss, R.D.: Analysis of the Dynamic Behavior of the Tryptophan Operon of Escherichia coli: The Functional Significance of Feedback Inhibition. PhD Thesis, University of California Riverside (1979)

    Google Scholar 

  7. Bratsun, D., Volfson, D., Tsimring, L.S., Hasty, J.: Delay-induced stochastic oscillations in gene regulation. Proc. Natl. Acad. Sci. USA 102, 14593–14598 (2005)

    Article  Google Scholar 

  8. Chen, H., Shiroguchi, K., Ge, H., Xie, X.S.: Genome-wide study of mRNA degradation and transcript elongation in Escherichia coli. Mol. Syst. Biol. 11, 781 (2015). Errata: Mol. Syst. Biol. 11, 808 (2015)

    Google Scholar 

  9. Crack, J.C., Stapleton, M.R., Green, J., Thomson, A.J., Le Brun, N.E.: Mechanism of [4Fe-4S](Cys)\(_4\) cluster nitrosylation is conserved among NO-responsive regulators. J. Biol. Chem. 288, 11492–11502 (2013)

    Google Scholar 

  10. Crack, J.C., Stapleton, M.R., Green, J., Thomson, A.J., Le Brun, N.E.: Influence of association state and DNA binding on the O\(_2\)-reactivity of [4Fe-4S] fumarate and nitrate reduction (FNR) regulator. Biochem. J. 463, 83–92 (2014)

    Google Scholar 

  11. Crack, J.C., Svistunenko, D.A., Munnoch, J., Thomson, A.J., Hutchings, M.I., Le Brun, N.E.: Differentiated, promoter-specific response of [4Fe-4S] NsrR DNA binding to reaction with nitric oxide. J. Biol. Chem. 291, 8663–8672 (2016)

    Article  Google Scholar 

  12. Cruz-Ramos, H., Crack, J., Wu, G., Hughes, M.N., Scott, C., Thomson, A.J., Green, J., Poole, R.K.: NO sensing by FNR: regulation of the Escherichia coli NO-detoxifying flavohaemoglobin, Hmp. EMBO J. 21, 3235–3244 (2002)

    Google Scholar 

  13. Degn, H.: Bistability caused by substrate inhibition of peroxidase in an open reaction. Nature 217, 1047–1050 (1968)

    Article  Google Scholar 

  14. Dibden, D.P., Green, J.: In vivo cycling of the Escherichia coli transcription factor FNR between active and inactive states. Microbiology 151, 4063–4070 (2005)

    Google Scholar 

  15. Ermentrout, B.: Simulating, Analyzing, and Animating Dynamical Systems. SIAM, Philadelphia (2002)

    Book  Google Scholar 

  16. Gardner, A.M., Martin, L.A., Gardner, P.R., Dou, Y., Olson, J.S.: Steady-state and transient kinetics of Escherichia coli nitric-oxide dioxygenase (flavohemoglobin). J. Biol. Chem. 275, 12581–12589 (2000)

    Google Scholar 

  17. Gerstle, J.T., Fried, M.G.: Measurement of binding kinetics using the gel electrophoresis mobility shift assay. Electrophoresis 14, 725–731 (1993)

    Article  Google Scholar 

  18. Gibson, M.A., Bruck, J.: Efficient exact stochastic simulation of chemical systems with many species and many channels. J. Phys. Chem. A 104, 1876–1889 (2000)

    Article  Google Scholar 

  19. Grossman, N., Ron, E.Z., Woldringh, C.L.: Changes in cell dimensions during amino acid starvation of Escherichia coli. J. Bacteriol. 152, 35–41 (1982)

    Google Scholar 

  20. Hasona, A., Kim, Y., Healy, F.G., Ingram, L.O., Shanmugam, K.T.: Pyruvate formate lyase and acetate kinase are essential for anaerobic growth of Escherichia coli on xylose. J. Bacteriol. 186, 7593–7600 (2004)

    Google Scholar 

  21. He, G., Shankar, R.A., Chzhan, M., Samouilov, A., Kuppusamy, P., Zweier, J.L.: Noninvasive measurement of anatomic structure and intraluminal oxygenation in the gastrointestinal tract of living mice with spatial and spectral EPR imaging. Proc. Natl. Acad. Sci. USA 96, 4586–4591 (1999)

    Google Scholar 

  22. Hu, Y., Butcher, P.D., Mangan, J.A., Rajandream, M.-A., Coates, A.R.M.: Regulation of hmp gene transcription in Mycobacterium tuberculosis: effects of oxygen limitation and nitrosative and oxidative stress. J. Bacteriol. 181, 3486–3493 (1999)

    Google Scholar 

  23. Kapanidis, A.N., Margeat, E., Ho, S.O., Kortkhonjia, E., Weiss, S., Ebright, R.H.: Initial transcription by RNA polymerase proceeds through a DNA-scrunching mechanism. Science 314, 1144–1147 (2006)

    Article  Google Scholar 

  24. Kennell, D., Riezman, H.: Transcription and translation initiation frequencies of the Escherichia coli lac operon. J. Mol. Biol. 114, 1–21 (1977)

    Article  Google Scholar 

  25. Kennell, D., Talkad, V.: Messenger RNA potential and the delay before exponential decay of messages. J. Mol. Biol. 104, 285–298 (1976)

    Article  Google Scholar 

  26. Kiley, P.J., Beinert, H.: Oxygen sensing by the global regulator, FNR: the role of the iron-sulfur cluster. FEMS Microbiol. Rev. 22, 341–352 (1999)

    Article  Google Scholar 

  27. Lazazzera, B.A., Beinert, H., Khoroshilova, N., Kennedy, M.C., Kiley, P.J.: DNA binding and dimerization of the Fe-S-containing FNR protein from Escherichia coli are regulated by oxygen. J. Biol. Chem. 271, 2762–2768 (1996)

    Google Scholar 

  28. Lloyd-Price, J., Gupta, A., Ribeiro, A.S.: SGNS2: a compartmental stochastic chemical kinetics simulator for dynamic cell populations. Bioinformatics 28, 3004–3005 (2012)

    Google Scholar 

  29. MacDonald, N.: Time lag in a model of a biochemical reaction sequence with end product inhibition. J. Theor. Biol. 67, 549–556 (1977)

    Article  MathSciNet  Google Scholar 

  30. Pauling, L.: General Chemistry. Dover, New York (1988)

    Google Scholar 

  31. Poole, R.K.: Nitric oxide and nitrosative stress tolerance in bacteria. Biochem. Soc. Trans. 33, 176–180 (2005)

    Article  Google Scholar 

  32. Poole, R.K., Hughes, M.N.: New functions for the ancient globin family: bacterial responses to nitric oxide and nitrosative stress. Mol. Microbiol. 36, 775–783 (2000)

    Article  Google Scholar 

  33. Potapov, I., Lloyd-Price, J., Yli-Harja, O., Ribeiro, A.S.: Dynamics of a genetic toggle switch at the nucleotide and codon levels. Phys. Rev. E 84, 031903 (2011)

    Article  Google Scholar 

  34. Potapov, I., Mäkelä, J., Yli-Harja, O., Ribeiro, A.S.: Effects of codon sequence on the dynamics of genetic networks. J. Theor. Biol. 315, 17–25 (2012)

    Article  Google Scholar 

  35. Ramsey, S., Orrell, D., Bolouri, H.: Dizzy: stochastic simulation of large-scale genetic regulatory networks. J. Bioinform. Comput. Biol. 3, 415–436 (2005)

    Article  Google Scholar 

  36. Record Jr., M.T., Reznikoff, W.S., Craig, M.L., McQuade, K.L., Schlax, P.J.: Escherichia coli RNA polymerase (\(\rm E\sigma ^{70}\)), promoters, and the kinetics of the steps of transcription initiation. In: Neidhardt, F.C. (ed) Escherichia coli and Salmonella: Cellular and Molecular Biology, vol. 2, 2nd edn, pp. 792–820. ASM Press, Washington (1996)

    Google Scholar 

  37. Rettich, T.R., Battino, R., Wilhelm, E.: Solubility of gases in liquids. 22. High-precision determination of Henry’s law constants of oxygen in liquid water from \(T = 274\,\rm K \) to \(T=328\,\rm K \). J. Chem. Thermodyn. 32, 1145–1156 (2000)

    Google Scholar 

  38. Ribeiro, A.S.: Stochastic and delayed stochastic models of gene expression and regulation. Math. Biosci. 223, 1–11 (2010)

    Article  MathSciNet  Google Scholar 

  39. Robinson, J.L., Brynildsen, M.P.: A kinetic platform to determine the fate of nitric oxide in Escherichia coli. PLoS Comput. Biol. 9, e1003049 (2013)

    Google Scholar 

  40. Robinson, J.L., Brynildsen, M.P.: Discovery and dissection of metabolic oscillations in the microaerobic nitric oxide response network of Escherichia coli. Proc. Natl. Acad. Sci. USA 113, E1757–E1766 (2016)

    Google Scholar 

  41. Rodionov, D.A., Dubchak, I.L., Arkin, A.P., Alm, E.J., Gelfrand, M.S.: Dissimilatory metabolism of nitrogen oxides in bacteria: Comparative reconstruction of transcriptional networks. PLoS Comput. Biol. 1, e55 (2005)

    Google Scholar 

  42. Roussel, M.R.: The use of delay differential equations in chemical kinetics. J. Phys. Chem. 100, 8323–8330 (1996)

    Article  Google Scholar 

  43. Roussel, M.R., Zhu, R.: Stochastic kinetics description of a simple transcription model. Bull. Math. Biol. 68, 1681–1713 (2006)

    Article  MathSciNet  Google Scholar 

  44. Roussel, M.R., Zhu, R.: Validation of an algorithm for delay stochastic simulation of transcription and translation in prokaryotic gene expression. Phys. Biol. 3, 274–284 (2006)

    Article  Google Scholar 

  45. Seelig, F.F., Denzel, B.: Hysteresis without autocatalysis: Simple enzyme systems as possible binary memory elements. FEBS Lett. 24, 283–286 (1972)

    Article  Google Scholar 

  46. Shamir, M., Bar-On, Y., Phillips, R., Milo, R.: Snapshot: Timescales in cell biology. Cell 164, 1302 (2016)

    Article  Google Scholar 

  47. Skancke, J., Bar, N., Kuiper, M., Hsu, L.M.: Sequence-dependent promoter escape efficiency is strongly influenced by bias for the pretranslocated state during initial transcription. Biochemistry 54, 4267–4275 (2015)

    Article  Google Scholar 

  48. Sutton, V.R., Mettert, E.L., Beinert, H., Kiley, P.J.: Kinetic analysis of the oxidative conversion of the [4Fe-4S]\(^{2+}\) cluster of FNR to a [2Fe-2S]\(^{2+}\) cluster. J. Bacteriol. 186, 8018–8025 (2004)

    Google Scholar 

  49. Taylor, S.R., Campbell, S.A.: Approximating chaotic saddles for delay differential equations. Phys. Rev. E 75, 046215 (2007)

    Google Scholar 

  50. Tolla, D.A., Savageau, M.A.: Regulation of aerobic-to-anaerobic transitions by the FNR cycle in Escherichia coli. J. Mol. Biol. 397, 893–905 (2010)

    Google Scholar 

  51. Tolla, D.A., Kiley, P.J., Lomnitz, J.G., Savageau, M.A.: Design principles of a conditional futile cycle exploited for regulation. Mol. Biosyst. 11, 1841–1849 (2015)

    Article  Google Scholar 

  52. Vasudevan, S.G., Armarego, W.L.F., Shaw, D.C., Lilley, P.E., Dixon, N.E., Poole, R.K.: Isolation and nucleotide sequence of the hmp gene that encodes a haemoglobin-like protein in Escherichia coli K-12. Mol. Gen. Genet. 226, 49–58 (1991)

    Google Scholar 

  53. Wang, Z., Han, Q.-Q., Zhou, M.-T., Chen, X., Guo, L.: Protein turnover analysis in Salmonella Typhimurium during infection by dynamic SILAC, Topograph, and quantitative proteomics. J. Basic Microbiol. 56, 801–811 (2016)

    Google Scholar 

  54. Wei, J., Kuo, J.C.W.: A lumping analysis in monomolecular reaction systems. Analysis of the exactly lumpable system. Ind. Eng. Chem. Fundam. 8, 114–123 (1969)

    Article  Google Scholar 

  55. Xu, L., Chen, H., Hu, X., Zhang, R., Zhang, Z., Luo, Z.W.: Average gene length is highly conserved in prokaryotes and eukaryotes and diverges only between the two kingdoms. Mol. Biol. Evol. 23, 1107–1108 (2006)

    Article  Google Scholar 

  56. Young, R., Bremer, H.: Polypeptide-chain-elongation rate in Escherichia coli B/r as a function of growth rate. Biochem. J. 160, 185–194 (1976)

    Google Scholar 

Download references

Acknowledgements

I would like to thank Professor Nick Le Brun of the University of East Anglia for answering some of my questions about this system. This work was supported by the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc R. Roussel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Roussel, M.R. (2019). A Delayed Mass-Action Model for the Transcriptional Control of Hmp, an NO Detoxifying Enzyme, by the Iron-Sulfur Protein FNR. In: Valmorbida, G., Seuret, A., Boussaada, I., Sipahi, R. (eds) Delays and Interconnections: Methodology, Algorithms and Applications. Advances in Delays and Dynamics, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-030-11554-8_14

Download citation

Publish with us

Policies and ethics