Skip to main content

Delay-Dependent Reciprocally Convex Combination Lemma for the Stability Analysis of Systems with a Fast-Varying Delay

  • Chapter
  • First Online:

Part of the book series: Advances in Delays and Dynamics ((ADVSDD,volume 10))

Abstract

This chapter deals with the stability analysis of linear systems subject to fast-varying delays. The main result is the derivation of a delay-dependent reciprocally convex lemma allowing a notable reduction of the conservatism of the resulting stability conditions with the introduction of a reasonable number of decision variables. Several examples are studied to show the potential of the proposed method.

This work was partially supported by the ANR project SCIDIS, contract number 15-CE23-0014.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Fridman, E.: Introduction to Time-Delay Systems: Analysis and Control. Springer, Berlin (2014)

    Book  Google Scholar 

  2. Fridman, E., Shaked, U., Liu, K.: New conditions for delay-derivative-dependent stability. Automatica 45(11), 2723–2727 (2009)

    Article  MathSciNet  Google Scholar 

  3. Gu, K.: An integral inequality in the stability problem of time-delay systems. In: Proceedings of the IEEE Conference on Decision and Control (2000)

    Google Scholar 

  4. He, Y., Wang, Q., Lin, C., Wu, M.: Delay-range-dependent stability for systems with time-varying delay. Automatica 43(2), 371–376 (2007)

    Article  MathSciNet  Google Scholar 

  5. Hien, L., Trinh, H.: Refined Jensen-based inequality approach to stability analysis of time-delay systems. IET Control. Theory Appl. 9(14), 2188–2194 (2015)

    Article  MathSciNet  Google Scholar 

  6. Moon, Y., Park, P., Kwon, W., Lee, Y.: Delay-dependent robust stabilization of uncertain state-delayed systems. Int. J. Control. 74(14), 1447–1455 (2001)

    Article  MathSciNet  Google Scholar 

  7. Park, P., Ko, J., Jeong, C.: Reciprocally convex approach to stability of systems with time-varying delays. Automatica 47(1), 235–238 (2011)

    Article  MathSciNet  Google Scholar 

  8. Park, P., Lee, W., Lee, S.: Auxiliary function-based integral inequalities for quadratic functions and their applications to time-delay systems. J. Frankl. Inst. 352(4), 1378–1396 (2015)

    Article  MathSciNet  Google Scholar 

  9. Seuret, A., Gouaisbaut, F.: Wirtinger-based integral inequality: application to time-delay systems. Automatica 49(9), 2860–2866 (2013)

    Article  MathSciNet  Google Scholar 

  10. Seuret, A., Gouaisbaut, F.: Hierarchy of LMI conditions for the stability of time delay systems. Syst. Control. Lett. 81, 1–7 (2015)

    Article  MathSciNet  Google Scholar 

  11. Seuret, A., Gouaisbaut, F.: Stability of linear systems with time-varying delays using Bessel-Legendre inequalities. IEEE Trans. Autom. Control. (2017, to appear)

    Google Scholar 

  12. Seuret, A., Gouaisbaut, F., Fridman, E.: Stability of systems with fast-varying delay using improved Wirtinger’s inequality. In: IEEE Conference on Decision and Control, pp. 946–951, Florence, Italy, December 2013

    Google Scholar 

  13. Shao, H.: New delay-dependent stability criteria for systems with interval delay. Automatica 45(3), 744–749 (2009)

    Article  MathSciNet  Google Scholar 

  14. Su, H., Ji, X., Chu, J.: New results of robust quadratically stabilizing control for uncertain linear time-delay systems. Int. J. Syst. Sci. 36(1), 27–37 (2005)

    Article  MathSciNet  Google Scholar 

  15. Xu, S., Lam, J.: A survey of linear matrix inequality techniques in stability analysis of delay systems. Int. J. Syst. Sci. 39(12), 1095–1113 (2008)

    Article  MathSciNet  Google Scholar 

  16. Zeng, H., He, Y., Wu, M., She, J.: Free-matrix-based integral inequality for stability analysis of systems with time-varying delay. IEEE Trans. Autom. Control. 60(10), 2768–2772 (2015)

    Article  MathSciNet  Google Scholar 

  17. Zhang, C.-K., He, Y., Jiang, L., Wu, M., Wang, Q.-G.: An extended reciprocally convex matrix inequality for stability analysis of systems with time-varying delay. Automatica (2017)

    Google Scholar 

  18. Zhang, X.-M., Han, Q.-L., Seuret, A., Gouaisbaut, F.: An improved reciprocally convex inequality and an augmented Lyapunov–Krasovskii functional for stability of linear systems with time-varying delay. Automatica (2017, to appear)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Seuret .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Seuret, A., Gouaisbaut, F. (2019). Delay-Dependent Reciprocally Convex Combination Lemma for the Stability Analysis of Systems with a Fast-Varying Delay. In: Valmorbida, G., Seuret, A., Boussaada, I., Sipahi, R. (eds) Delays and Interconnections: Methodology, Algorithms and Applications. Advances in Delays and Dynamics, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-030-11554-8_12

Download citation

Publish with us

Policies and ethics