Skip to main content

The Scheme Relating Frequency of Lightning Flashes to Statistical Characteristics of Convective Activity in the Atmosphere for the IAP RAS Climate Model

  • Conference paper
  • First Online:
Physical and Mathematical Modeling of Earth and Environment Processes (2018)

Abstract

A modification of the commonly used Price-Rind scheme for frequency of lightning flashes (FL), which can be used for calculations with large spatial and time steps, is developed. With such steps, the exponent in the relationship of LFF on convective cloud heights appears to be smaller by a factor of two over land and by one fourth over ocean in comparison to that in the original Price-Rind scheme. The modified version is implemented into the IAP RAS climate model (CM). The results of the lightning flash frequency simulations with the modified scheme agree better with the satellite data than those with the original one. In the IAP RAS CM, global warming (cooling) leads to FL increase (decrease) in all seasons. The sensitivity of lightning flashes frequency to the surface air temperature change at the global level is estimated equal to 10%/K.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rakov, V.A., Uman, M.A.: Lightning: Physics and Effects. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  2. Price, C., Rind, D.: A simple lightning parameterization for calculating global lightning distributions. J. Geophys. Res. Atmos. 97, 9919–9933 (1992). https://doi.org/10.1029/92JD00719

    Article  Google Scholar 

  3. Mareev, E.A., Volodin, E.M.: Variation of the global electric circuit and Ionospheric potential in a general circulation model. Geophys. Res. Lett. 41, 9009–9016 (2014). https://doi.org/10.1002/2014GL062352

    Article  Google Scholar 

  4. Krause, A., Kloster, S., Wilkenskjeld, S., et al.: The sensitivity of global wildfires to simulated past, present, and future lightning frequency. J. Geophys. Res. Biogeosci. 119, 312–322 (2014). https://doi.org/10.1002/2013jg002502

    Article  Google Scholar 

  5. Clark, S.K., Ward, D.S., Mahowald, N.M.: Parameterization-based uncertainty in future lightning flash density. Geophys. Res. Lett. 44, 2893–2901 (2017). https://doi.org/10.1002/2017GL073017

    Article  Google Scholar 

  6. Claussen, M., Mysak, L.A., Weaver, A.J., et al.: Earth system models of intermediate complexity: closing the gap in the spectrum of climate system models. Clim. Dyn. 18, 579–586 (2002). https://doi.org/10.1007/s00382-001-0200-1

    Article  Google Scholar 

  7. Mokhov, I.I., Eliseev, A.V.: Modeling of global climate variations in the 20th–23rd centuries with new RCP scenarios of anthropogenic forcing. Dokl. Earth Sci. 443, 532–536 (2012). https://doi.org/10.1134/S1028334X12040228

    Article  Google Scholar 

  8. Mazin, I., Khrgian, A.: Handbook of Clouds and Cloudy Atmosphere. Gidrometeoizdat, Leningrad (1989). (in Russian)

    Google Scholar 

  9. Brylev, G.B., Gashina, S.B., Nizdoyminoga, G.L.: Radar Characteristics of Clouds and Precipitation. Gidrometeoizdat, Leningrad (1986). (in Russian)

    Google Scholar 

  10. Eliseev, A.V., Coumou, D., Chernokulsky, A.V., et al.: Scheme for calculation of multi-layer cloudiness and precipitation for climate models of intermediate complexity. Geosci. Model Devel. 6, 1745–1765 (2013). https://doi.org/10.5194/gmd-6-1745-2013

    Article  Google Scholar 

  11. Mokhov, I.I.: Diagnostics of Climate System Structure. Gidrometeoizdat, St. Petersburg (1993). (in Russian)

    Google Scholar 

  12. Cecil, D.J., Buechler, D.E., Blakeslee, R.J.: Gridded lightning climatology from TRMM-LIS and OTD: Dataset description. Atmos. Res. 135–136, 404–414 (2014). https://doi.org/10.1016/j.atmosres.2012.06.028

    Article  Google Scholar 

  13. Sun, B., Groisman, P.Ya., Mokhov, I.I.: Recent changes in cloud-type frequency and inferred increases in convection over the United States and the former USSR. J. Clim. 14, 1864–1880 (2001). https://doi.org/10.1175/1520-0442(2001)014<1864:RCICTF>2.0.CO;2

  14. Mokhov, I.I., Akperov, M.G.: Tropospheric lapse rate and its relation to surface temperature from reanalysis data. Izv. Atmos. Ocean. Phys. 42, 430–438 (2006). https://doi.org/10.1134/S0001433806040037

    Article  Google Scholar 

  15. Norris, J.R.: Trends in upper-level cloud cover and surface divergence over the tropical Indo-Pacific Ocean between 1952 and 1997. J. Geophys. Res. Atmos. 110(D8), D08206 (2005). https://doi.org/10.1029/2005jd006183

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Eliseev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Eliseev, A.V., Ploskov, A.N., Chernokulsky, A.V., Mokhov, I.I. (2019). The Scheme Relating Frequency of Lightning Flashes to Statistical Characteristics of Convective Activity in the Atmosphere for the IAP RAS Climate Model. In: Karev, V., Klimov, D., Pokazeev, K. (eds) Physical and Mathematical Modeling of Earth and Environment Processes (2018). Springer Proceedings in Earth and Environmental Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-11533-3_33

Download citation

Publish with us

Policies and ethics