Skip to main content

Modeling of a Sun Glint on a Sea Surface for Remote Sensing Purposes

  • Conference paper
  • First Online:
  • 568 Accesses

Abstract

According to calculations of the upward radiation at the TOA level made on the base of the Cox-Munk model of sea surface slopes distribution and Sobolev model of atmospheric scattering, presented are the sun glint quantitative characteristics such as length, maximal width and maximal contrast for satellite scanner measurements in the visible and near-IR ranges of 0.4–1.6 μm for sea wind velocities of 2–14 m/s at a 10 m height at zonal and meridional directions and aerosol optical depth of 0.03, 0.21, corresponding to the cases of pure atmosphere and with presence of marine aerosol above moderate level, for a sun-synchronous orbit at an altitude of 866 km. For other satellite heights the maximal contrast and length are almost unchanged, and for the maximal width corresponding corrections are given. Presented results may be used for the purposes of planning of satellite measurements of sea and atmosphere parameters sensitive to the sun glint manifestations and for analyzing of satellite images.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Mobley, C.D., Werdell, J., Franz, B., Bailey, S.: Atmospheric correction for satellite ocean color radiometry, 85 p. (2016). https://oceancolor.gsfc.nasa.gov/docs/technical/NASA-TM-2016-217551.pdf

  2. Kay, S., Hedley, J.D., Lavender, S.: Sun glint correction of high and low spatial resolution images of aquatic scenes: a review of methods for visible and near-infrared wavelengths. Remote Sens. 1, 697–730 (2009). https://doi.org/10.3390/rs1040697

    Article  Google Scholar 

  3. Cox, C., Munk, W.: Measurement of the roughness of the sea surface from photographs of the sun’s glitter. J. Opt. Soc. Am. 44(11), 838–850 (1954)

    Article  Google Scholar 

  4. Lu, Y., Zhou, Y., Liu, Y., Mao, Z., Qian, W., Wang, M., Zhang, M., Xu, J., Sun, S., Du, P.: Using remote sensing to detect the polarized sunglint reflected from oil slicks beyond the critical angle. J. Geophys. Res. Oceans 122(8), 6342–6354 (2017). https://doi.org/10.1002/2017jc012793

    Article  Google Scholar 

  5. Li, J., Menzel, W.P., Yang, Z., Frey, R.A., Ackerman, S.A.: High-spatial-resolution surface and cloud-type classification from MODIS multi-spectral band measurements. J. Appl. Meteorol. 42, 204–226 (2003)

    Article  Google Scholar 

  6. Lebedev, N.E., Zapevalov, A.S. Comparison of empirical sea-surface slopes probability densities for the purposes of satellite sounding. In: Physical and mathematical modeling of earth and environment processes. PMMEEP 2017. Springer Geology. Springer, Cham. (2017). https://doi.org/10.1007/978-3-319-77788-7_21

  7. Kiliyanpilakkil, V.P., Meskhidze, N.: Deriving the effect of wind speed on clean marine aerosol optical properties using the A-Train satellites. Atmos. Chem. Phys. 11, 11401–11413 (2011). https://doi.org/10.5194/acp-11-11401

    Article  Google Scholar 

  8. Myhre, G., Stordal, F., Johnsrud, M., Diner, D.J., Geogdzhayev, I.V., Haywood, J.M., Holben, B.N., HolzerPopp, T., Ignatov, A., Kahn, R.A., Kaufman, Y.J., Loeb, N., Martonchik, J.V., Mishchenko, M.I., Nalli, N.R., Remer, L.A., Schroedter-Homscheidt, M., Tanré, D., Torres, O., Wang, M.: Intercomparison of satellite retrieved aerosol optical depth over ocean during the period September 1997 to December 2000. Atmos. Chem. Phys. 5, 1697–1719 (2005). https://doi.org/10.5194/acp-5-1697-2005

    Article  Google Scholar 

  9. Lebedev, N.E., Zapevalov, A.S.: Characteristic geometric features of the sun glint on sea surface at scanning satellite measurements, pp. 179–182 (2018). http://symp.iao.ru/files/symp/aoo/24/C.pdf. (in Russian)

  10. http://d33.infospace.ru/d33_conf/tarusa2018/03.pdf. (in Russian)

  11. Sobolev, V.V.: Light Scattering in Planetary Atmospheres, 256 p. Pergamon, New York (1975)

    Google Scholar 

  12. Zibordi, G., Voss, K.J.: Geometrical and spectral distribution of sky radiance - comparison between simulations and field measurements. Remote Sens. Environ. 27, 343–358 (1989). https://doi.org/10.1016/0034-4257(89)90094-1

    Article  Google Scholar 

  13. Jin, Z., Qiao, Y., Wang, Y., Fang, Y., Yi, W.: A new parameterization of spectral and broadband ocean surface albedo. Opt. Express 19(27), 26429–26443 (2011). https://doi.org/10.1364/OE.19.026429

    Article  Google Scholar 

  14. Smith, S.D.: Coefficients for sea surface wind stress, heat flux, and wind profiles as a function of wind speed and temperature. J. Geophys. Res. 93(C12), 15467–15472 (1988). https://doi.org/10.1029/JC093iC12p15467

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nick Eugen Lebedev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lebedev, N.E., Zapevalov, A.S. (2019). Modeling of a Sun Glint on a Sea Surface for Remote Sensing Purposes. In: Karev, V., Klimov, D., Pokazeev, K. (eds) Physical and Mathematical Modeling of Earth and Environment Processes (2018). Springer Proceedings in Earth and Environmental Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-11533-3_15

Download citation

Publish with us

Policies and ethics