Abstract
This paper shows the interdisciplinary prominence of the concept of neighbourhood (Umgebung) in the work of Weyl. It tracks different appearances of this notion in the contexts of mathematics, physics, and the theory of subjectivity, and describes them as variants of one another. The historical and systematic background of this continuous reliance on (variations of) the concept of neighbourhood is traced back in large part to the interaction between Weyl and the philosopher Fritz Medicus, who introduced Weyl to the work of Fichte. The importance of certain Fichtean concepts, such as (inter)subjectivity and recognition, for Weyl’s analyses of the continuum is shown by unfolding various analogies Weyl provided in his mathematical writings.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
See, for instance, Sieroka (2010b).
- 2.
- 3.
Cf., for instance, Debs and Redhead (2007).
- 4.
Cf. Sieroka (2009).
- 5.
See esp. Sigurdsson (1991) for more details on Weyl’s time in Göttingen.
- 6.
In 1946 Weyl wrote retrospectively about his time with Medicus: ‘It was in those years that, not entirely without his influence, I got deeply involved in Fichte and Eckhart, and that later the theory of relativity, the problem of the infinite in mathematics, and finally quantum mechanics became the motivations for my attempts to help clarify the methods of scientific understanding and the theoretical picture of reality as a whole’ (ETH Zurich University Archives, Hs91a: 16).
- 7.
For more details on Weyl’s time and interaction in Zurich, see Sieroka (2007, 2010a). Notably, already before meeting Weyl, Medicus had serious interests in philosophical issues related to the exact sciences. In particular, his doctorate thesis is on Kants transcendentale Aesthetik und die nichteuklidische Geometrie (see Medicus 1899).
- 8.
In Die Freiheit des Willens und ihre Grenzen from 1926 Medicus maintains that ‘Hermann Weyl argued with outmost clarity [against a closed concept of causality in physics …] and with careful attention to the problem of freedom’ (Medicus 1926: 85). In turn, in his PMN (finished the same year and published at the beginning of 1927) Weyl claims that ‘Medicus provides the first philosophical comment on the altered concept of causality which is developing in the physics of our time’ (Weyl 1927: 157).
- 9.
ETH Zurich University Archives, Hs91: 2–3.
- 10.
- 11.
- 12.
For more details regarding the following sketch of writings and concepts, see Sieroka (2010a: 89–93).
- 13.
- 14.
- 15.
Cf. Ryckman (2013).
- 16.
- 17.
See Weyl (1923).
- 18.
Weyl (1925a/1988: 5)
- 19.
- 20.
- 21.
- 22.
Weyl (1924: 510). This quote stems from the context of Weyl’s agent theory which he held around the mid-1920s. However, related claims can also be found in the context of Weyl’s singularity approach of 1921; and also in 1922 he claims that ‘the matter particle is not even a point in the field space, but nothing spatial (extended) at all. However, it is nested in a spatial neighbourhood from which its field effects originate’ (Weyl in Bovet 1922: 904; an English translation of this text is provided in Weyl 2009: 25–28).
- 23.
Weyl (1921b: 255).
- 24.
Weyl (1924: 510).
- 25.
See Weyl (1920: 122): ‘there remains … a space for autonomous and causally absolutely independent decisions; I consider the elementary quanta of matter to be the place of these decisions.’
- 26.
Fichte 1796/1979: 39, 47) (=Foundations of Natural Right §§3–4).
- 27.
For more details on the reception of Fichte during the first half of the twentieth century see Sieroka (Sieroka 2010a: 141–152).
- 28.
Medicus (1926: 108–109).
- 29.
Medicus (1947/1954: 118, 132).
- 30.
- 31.
See, for instance, Weyl (1952).
- 32.
See Weyl (1954: 642).
- 33.
See Goodman (1978).
- 34.
Fichte (1808/1978: 62, 128) (=Addresses to the German Nation).
- 35.
Whereas the political right among the Fichte scholars would usually refer to the Reden, the left-wing readers would usually refer to Fichte’s The Closed Commercial State as masterminding, for instance, socialist five-year plans.
- 36.
See Fichte (1808/1978: 199) (=Addresses to the German Nation). Moreover, Fichte’s claims about the German language must be contextualized to the fact that in 1808 German had been a suitable language in academic and other uplifted and official contexts for about only half a century. Moreover, French was in acute advance again after Napoleonic troops had invaded Berlin in October 1806.
- 37.
Medicus (1930).
- 38.
Regarding religious groups, note that for Cassirer religion is a separate ‘symbolic form’ (see, for instance, Cassirer 1944). This is noteworthy because the aforementioned Goodmanian understanding of symbolic systems is in turn based on a particular interpretation of Cassirer (see Goodman 1978: 1).
- 39.
Medicus (1938).
- 40.
Medicus (1926: 113).
- 41.
Medicus (1947/1954: 118).
- 42.
See, for instance, Weyl (1927: 33).
- 43.
See Weyl (1918a: 70).
- 44.
‘Every point A determines certain subsystems of points to which the point itself belongs and which are called neighbourhoods of point A … If B is an arbitrary point in a neighbourhood of A, then this neighbourhood is also a neighbourhood of B’ (Hilbert 1902: 234–235).
- 45.
Weyl (1921a: 149–150).
- 46.
A proviso has to be added here though: The reference to love as being poured out implies (in a philosophical technical sense) a notion of (divine) agápe, which fits well with Fichte’s notion of the term. Medicus’s notion from above, however, seems to be nearer to (coequal) philÃa.
- 47.
Weyl (1918b: 8). A similar phrasing can be found in Weyl (1918a: 72) and also in the English translation of PMN (see Weyl 1949: 123), where it occurs in relation to the analogy of coordinate systems; cf. Sect. 4.5.2 below. Besides, I deliberately put ‘residue’ in brackets here because in the German original the implicit hint at the residue theorem in complex analysis is surely intended. Note that, roughly and metaphorically speaking, a residue is a point which one cannot simply ‘pass over’ (when doing a line integral).
- 48.
- 49.
See Weyl (1927: 88–90).
- 50.
Weyl (1927: 89).
- 51.
Weyl (1918b: 3, 82).
- 52.
See Husserl (1950: 90–147) (=Cartesian Meditations §§42–62). I refer to this passage because it is the locus classicus regarding Husserl’s notion on intersubjectivity. I am fully aware though that these meditations were first held as a course of lectures in Paris in 1929 and are thus later than most of the aforementioned writings by Weyl.
- 53.
- 54.
Weyl (1927: 89).
- 55.
- 56.
However, the analogy of coordinate systems as it occurs in Weyl (1954) differs in some respects from the way it is presented in PMN; for instance, with respect to the existence of an ‘absolute I’, given by the standard basis in which all appearances equal the objects; e.g. \( \overrightarrow{r}={x}_1\left(1,0\right)+{x}_2\left(0,1\right)=\left({x}_1,{x}_2\right) \). For a more detailed discussion of the 1954 version of the analogy, see Bell (2000: 271–272).
- 57.
See Weyl (1954: 642–644).
- 58.
- 59.
- 60.
See Weyl (1954: 641, 643): ‘[As compared to Husserl, Fichte] is anything but a phenomenologist, he is a constructivist of the purest sort, who – without looking left or right – goes his own headstrong way of construction ... As for the antagonism between constructivism and phenomenology, on the whole my sympathy is on his side.’ Cf. Breazeale (1996) for a comprehensive discussion of the relation between practical and theoretical philosophy in (esp. the early) Fichte.
- 61.
Medicus (1926: 20, 82–84). Very broadly speaking, one might say that in Kant there are in the end two kinds of ‘the unconditioned’: the thing in itself and spontaneity. Fichte, in contrast, employs only one kind of ‘the unconditioned’ which occurs with different signs though: with an inherent antagonism of real versus ideal action – see Fichte (1794/1997: 211–229) (= Foundations of the Entire Science of Knowledge §§8–19).
- 62.
See Weyl (1927: 157).
- 63.
Weyl (1923: 46).
- 64.
- 65.
Remember also how Weyl himself referred to transformations and invariances when introducing idealism by means of the analogy of coordinate systems (‘carrying over the arithmetical appearances to the viewpoint of invariances’; cf. above).
- 66.
As far as the philosophy of science is concerned, see in particular Debs and Redhead (2007). (I might be allowed to add though that I disagree with some of the details of their interpretation of Weyl, especially as it makes him too much of a scientific realist.) Regarding a broader philosophical setup, the most prominent and impressive attempt here is surely Nozick (2001).
References
Bell, J.L. 2000. Hermann Weyl on Intuition and the Continuum. Philosophia Mathematica 8: 259–273.
Bovet, E. 1922. Die Physiker Einstein und Weyl antworten auf eine metaphysische Frage. Wissen und Leben 15: 901–906. (English translation in Weyl 2009: 25–28).
Breazeale, D. 1996. Certainty, universal validity, and conviction: The methodological primacy of practical reason within the Jena ‘Wissenschaftslehre’. In New perspectives on Fichte, ed. D. Breazeale and T. Rockmore, 35–59. Atlantic Highlands: Humanities Press.
Cassirer, E. 1944. An essay on man – An introduction to a philosophy of human culture. New Haven: Yale University Press.
Coleman, R., and H. Korté. 2001. Hermann Weyl: Mathematician, physicist, philosopher. Hermann Weyl’s ‘Raum-Zeit-Materie’ and a general introduction to his scientific work, ed. E. Scholz, pp. 157–386. Basel: Birkhäuser.
Debs, T.A., and M.L.G. Redhead. 2007. Objectivity, invariance, and convention: Symmetry in physical science. Cambridge, MA: Harvard University Press.
Eckes, C. 2011. Groupes, invariants et géométries dans l’œuvre de Weyl: Une étude des écrits de Hermann Weyl en mathématiques, physique mathématique et philosophie, 1910–1931. PhD thesis, Philosophy, Université Lyon III.
Feferman, S. 2000. The significance of Weyl’s ‘Das Kontinuum’. In Proof theory: History and philosophical significance, ed. V.F. Hendricks, S.A. Pedersen, and K.F. Jørgensen, 179–194. Dordrecht: Kluwer.
Fichte, J.G. 1794/1997. Grundlage der gesamten Wissenschaftslehre. Hamburg: Meiner.
———. 1796/1979. Grundlage des Naturrechts nach Prinzipien der Wissenschaftslehre. Hamburg: Meiner.
———. 1808/1978. Reden an die deutsche Nation. Hamburg: Meiner.
Goodman, N. 1978. Ways of worldmaking. Indianapolis: Hackett.
Hilbert, D. 1902. Ueber die Grundlagen der Geometrie. Nachrichten der Königlichen Gesellschaft der Wissenschaften zu Göttingen, mathematisch-physikalische Klasse 1902: 233–241.
Husserl, E. 1913/1977. Ideen zu einer reinen Phänomenologie und phänomenologischen Philosophie. Erstes Buch (=Husserliana III). Nijhoff, Den Haag.
———. 1952. Ideen zu einer reinen Phänomenologie und phänomenologischen Philosophie. Zweites Buch (=Husserliana IV). Den Haag: Nijhoff.
———. 1950. Cartesianische Meditationen und Pariser Vorträge (=Husserliana I). Den Haag: Nijhoff.
Kloc-Konkołowicz, J. 2013. Das Ich und der Andere: Intersubjektivität in der Philosophie Johann Gottlieb Fichtes und in der Phänomenologie Edmund Husserls. Fichte-Studien 37: 163–174.
Medicus, F. 1899. Kants transcendentale Aesthetik und die nichteuklidische Geometrie. Kantstudien 3: 261–300.
———. 1926. Die Freiheit des Willens und ihre Grenzen. Tübingen: Mohr (Siebeck).
———. 1930. Paul Hensel 70 Jahre alt. Neue Zürcher Zeitung (no. 963, May 17th).
———. 1938. Von der Kultur und vom Kulturzerfall. Neue Zürcher Zeitung (no. 649, April 10th). Reprinted in: Medicus, F. 1954. Vom Überzeitlichen in der Zeit, pp. 89–95. Zurich: Artemis.
———. 1947/1954. Kollektivschuld – Ein Problem der Ethik. In Vom Überzeitlichen in der Zeit, ed. F. Medicus, 114–139. Zurich: Artemis.
Nozick, R. 2001. Invariances: The structure of the objective world. Cambridge, MA: Belknap Press.
Ryckman, T.A. 2005. The reign of relativity: Philosophy in physics 1915–1925. Oxford: Oxford University Press.
———. 2013. Norman Sieroka: Umgebungen (book review). HOPOS 3: 164–168.
Scholz, E. 1994. Hermann Weyl’s contribution to geometry, 1917–1923. In The intersection of history and mathematics, ed. S. Chakira, S. Mitsuo, and J.W. Dauben, 203–230. Basel: Birkhäuser.
———. 1995. Hermann Weyl’s ‘Purely Infinitesimal Geometry’. In Proceedings of the international congress of mathematicians (Zürich, Switzerland 1994), ed. S.D. Chatterji, 1592–1603. Basel: Birkhäuser.
———. 1999. The concept of Manifold, 1850–1950. In History of topology, ed. I.M. James, 25–64. Amsterdam: Elsevier.
Sieroka, N. 2007. Weyl’s ‘Agens Theory’ of matter and the Zurich Fichte. Studies in History and Philosophy of Science 38: 84–107.
———. 2009. Husserlian and Fichtean leanings: Weyl on logicism, intuitionism, and formalism. Philosophia Scientiae 13: 85–96.
———. 2010a. Umgebungen. Symbolischer Konstruktivismus im Anschluss an Hermann Weyl und Fritz Medicus. Zurich: Chronos.
———. 2010b. Geometrization versus transcendent matter: A systematic historiography of theories of matter following Weyl. British Journal for the Philosophy of Science 61: 769–802.
———. (2018). Theoretical construction in physics – The role of Leibniz for Weyl’s ‘Philosophie der Mathematik und Naturwissenschaft’. Studies in History and Philosophy of Modern Physics 61: 6–17.
Sigurdsson, S. 1991. Hermann Weyl, mathematics and physics, 1900–1927. PhD thesis, Department of the History of Science, Harvard University.
Tieszen, R. 2000. The philosophical background of Weyl’s mathematical constructivism. Philosophia Mathematica 8: 274–301.
Tietjen, H. 1980. Fichte und Husserl: Letztbegründung, Subjektivität und praktische Vernunft im transzendentalen Idealismus. Frankfurt (Main): Klostermann.
Weyl, H. 1913/1997. Die Idee der Riemannschen Fläche. Leipzig/Stuttgart: Teubner.
———. 1918a. Das Kontinuum – Kritische Untersuchungen über die Grundlagen der Analysis. Leipzig: Veit.
———. 1918b. Raum – Zeit – Materie. Berlin: Springer.
———. 1920. Das Verhältnis der kausalen zur statistischen Betrachtungsweise in der Physik. Schweizerische Medizinische Wochenzeitschrift 50: 737–741. (Quoted from Weyl 1968: GA II: 113-122).
———. 1921a. Über die neue Grundlagenkrise der Mathematik. Mathematische Zeitschrift 10: 39–79. (Quoted from Weyl 1968: GA II: 143–180).
———. 1921b. Feld und Materie. Annalen der Physik 65: 541–563. (Quoted from Weyl 1968: GA II: 237–259).
———. 1923. Mathematische Analyse des Raumproblems. Berlin: Springer.
———. 1924. Was ist Materie? Die Naturwissenschaften 12: 561–568, 585-593, 604–611. (Quoted from Weyl 1968: GA II: 486-510).
———. 1925a. Riemanns geometrische Ideen, ihre Auswirkung und ihre Verknüpfung mit der Gruppentheorie. Berlin: Springer.
———. 1925b. Die heutige Erkenntnislage in der Mathematik. Symposion 1: 1–23. (Quoted from Weyl 1968: GA II: 511–542).
———. 1927. Philosophie der Mathematik und Naturwissenschaft. Munich/Berlin: Oldenbourg.
———. 1949. Philosophy of mathematics and natural science. Princeton: Princeton University Press.
———. 1952. Symmetry. Princeton: Princeton University Press.
———. 1954. Erkenntnis und Besinnung – Ein Lebensrückblick. Studia Philosophica, Jahrbuch der Schweizerischen Philosophischen Gesellschaft//Annuaire de la Société Suisse de Philosophie. (Quoted from Weyl 1968: GA IV: 631–649. English translation in Weyl 2009: 204–221).
———. 1968. Gesammelte Abhandlungen, 4 vols, ed. by K. Chandrasekharan. Berlin: Springer. (=GA, cited by volume and page).
———. 2009. Mind and nature: Selected writings on philosophy, mathematics, and physics, ed. by P. Pesic. Princeton: Princeton University Press.
Acknowledgement
I would like to thank the audience at the international workshop ‘Weyl and the Problem of Space: From Science to Philosophy’ for discussion and, in particular, Julien Bernard and Carlos Lobo for all their efforts in organising the workshop and rendering this volume possible. I would also like to thank Jonathan Lorand and Erhard Scholz for their very helpful and much appreciated comments on earlier drafts of this paper.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Sieroka, N. (2019). Neighbourhoods and Intersubjectivity. In: Bernard, J., Lobo, C. (eds) Weyl and the Problem of Space. Studies in History and Philosophy of Science, vol 49. Springer, Cham. https://doi.org/10.1007/978-3-030-11527-2_4
Download citation
DOI: https://doi.org/10.1007/978-3-030-11527-2_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-11526-5
Online ISBN: 978-3-030-11527-2
eBook Packages: Religion and PhilosophyPhilosophy and Religion (R0)