Skip to main content

The 3-Modular Character Table of the Automorphism Group of the Sporadic Simple O’Nan Group

  • Conference paper
  • First Online:
Advances in Algebra (SRAC 2017)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 277))

Included in the following conference series:

  • 557 Accesses

Abstract

We compute the 3-modular character table of the group \(\mathrm{O'N}.2\). Much of the table is deduced character theoretically from the known 3-modular character table of the sporadic simple O’Nan group \(\text {O}'\text {N}\). We finish the remaining questions module theoretically with an application of condensation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andrilli, S.F.: On the uniqueness of O’Nan’s sporadic simple group. ProQuest LLC, Ann Arbor, MI (1979). http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:8008854. Thesis (Ph.D.)–Rutgers The State University of New Jersey - New Brunswick

  2. Breuer, T.: The GAP Character Table Library, Version 1.2.1 (2012). GAP package

    Google Scholar 

  3. Conway, J., Curtis, R., Norton, S., Parker, R., Wilson, R.: Atlas of Finite Groups. Clarendon Press, Oxford, England (1985)

    Google Scholar 

  4. Henke, A., Hiss, G., Müller, J.: The \(7\)-modular decomposition matrices of the sporadic O’Nan group. J. London Math. Soc. (2) 60(1), 58–70 (1999). https://doi.org/10.1112/S0024610799007735

    Article  MathSciNet  Google Scholar 

  5. Hiss, G., Lux, K.: Brauer Trees of Sporadic Groups. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York (1989)

    Google Scholar 

  6. James, G.D.: The decomposition of tensors over fields of prime characteristic. Math. Z. 172(2), 161–178 (1980). https://doi.org/10.1007/BF01182401

    Article  MathSciNet  Google Scholar 

  7. Jansen, C., Lux, K., Parker, R., Wilson, R.: An atlas of Brauer characters. London Mathematical Society Monographs. New Series, vol. 11. The Clarendon Press, Oxford University Press, New York. Appendix 2 by T. Breuer and S. Norton, Oxford Science Publications (1995)

    Google Scholar 

  8. Jansen, C., Wilson, R.A.: Two new constructions of the O’Nan group. J. London Math. Soc. (2)56(3), 579–583 (1997). https://doi.org/10.1112/S0024610798005742

    Article  MathSciNet  Google Scholar 

  9. Jansen, C., Wilson, R.A.: The \(2\)-modular and \(3\)-modular decomposition numbers for the sporadic simple O’Nan group and its triple cover. J. London Math. Soc. (2) 57(1), 71–90 (1998). https://doi.org/10.1112/S0024610798005730

    Article  MathSciNet  Google Scholar 

  10. Koshitani, S., Kunugi, N., Waki, K.: Broué’s conjecture for non-principal 3-blocks of finite groups. J. Pure Appl. Algebra 173(2), 177–211 (2002). https://doi.org/10.1016/S0022-4049(01)00170-0

    Article  MathSciNet  Google Scholar 

  11. Lux, K., Pahlings, H.: Representations of groups. In: A Computational Approach. Cambridge Studies in Advanced Mathematics, vol. 124. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511750915

  12. Lux, K., Ryba, A.J.E.: The 13-modular character table of \(2.{\rm Suz}.2\). Comm. Algebra (to appear)

    Google Scholar 

  13. Müller, J.: Private communication (2017)

    Google Scholar 

  14. O’Nan, M.E.: Some evidence for the existence of a new simple group. Proc. London Math. Soc. (3) 32(3), 421–479 (1976). https://doi.org/10.1112/plms/s3-32.3.421

    Article  MathSciNet  Google Scholar 

  15. Ottensmann, M.: Vervollständigung der Brauerbäume von \( 3.{\rm ON}\) in Charakteristik \(11\), \(19\) und \(31\) mit Methoden der Kondensation. Diploma thesis, RWTH Aachen (2000)

    Google Scholar 

  16. Parker, R.A.: The computer calculation of modular characters (the meat-axe). In: Computational Group Theory, pp. 267–274. Durham (1982); Academic Press, London (1984)

    Google Scholar 

  17. Ringe, M.: The C–Meataxe. Manual RWTH Aachen (1994)

    Google Scholar 

  18. Ryba, A.J.E.: A new construction of the O’Nan simple group. J. Algebra 112(1), 173–197 (1988). https://doi.org/10.1016/0021-8693(88)90141-X

    Article  MathSciNet  Google Scholar 

  19. Ryba, A.J.E.: Computer condensation of modular representations. J. Symbolic Comput. 9(5–6), 591–600 (1990). https://doi.org/10.1016/S0747-7171(08)80076-4. Computational Group Theory, Part 1

    Article  MathSciNet  Google Scholar 

  20. Ryba, A.J.E.: Condensation of symmetrized tensor powers. J. Symbolic Comput. 32(3), 273–289 (2001). https://doi.org/10.1006/jsco.2001.0459

    Article  MathSciNet  Google Scholar 

  21. Soicher, L.H.: A new existence and uniqueness proof for the O’Nan group. Bull. London Math. Soc. 22(2), 148–152 (1990). https://doi.org/10.1112/blms/22.2.148

    Article  MathSciNet  Google Scholar 

  22. The GAP Group: GAP – Groups, Algorithms, and Programming, Version 4.7.5 (2014). http://www.gap-system.org

  23. The Modular Atlas homepage. http://www.math.rwth-aachen.de/~MOC/

  24. Wilson, R., Parker, R., Nickerson, S., Bray, J., Breuer, T.: AtlasRep, a GAP interface to the atlas of group representations, Version 1.5 (2011). Refereed GAP package

    Google Scholar 

  25. Wilson, R., Walsh, P., Tripp, J., Suleiman, I., Parker, R., Norton, S., Nickerson, S., Linton, S., Bray, J., Abbott, R.: ATLAS of Finite Group Representations. http://brauer.maths.qmul.ac.uk/Atlas/

  26. Wilson, R.A.: Standard generators for sporadic simple groups. J. Algebra 184(2), 505–515 (1996). https://doi.org/10.1006/jabr.1996.0271

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Lux .

Editor information

Editors and Affiliations

Appendix: Brauer Trees for \(\text {O}'\text {N}.2\) in Characteristic 5

Appendix: Brauer Trees for \(\text {O}'\text {N}.2\) in Characteristic 5

There are six blocks with Brauer trees for \(\text {O}'\text {N}.2\) in characteristic 5 and only the \(4^{th}\) block in the GAP labeling of all blocks is not straightforward. It contains the following ordinary irreducibles:

$$ \begin{array}{|c|c|r|}\hline \text {Nr.}&{} \text {GAP-Nr.} &{} \text {Degree} \\ \hline 1 &{} 6 &{} 51832 \\ \hline 2 &{} 7 &{} 26752 \\ \hline 3 &{} 8 &{} 26752 \\ \hline 4 &{} 12 &{} 52668 \\ \hline 5 &{} 13 &{} 52668 \\ \hline \end{array}$$

Its tree is a stem, more precisely, an unfolding of a tree for \(\mathrm{O'N}\). The middle node is the ordinary irreducible of degree 51832 and its neighbors are the two irreducibles of degree 52688. Consider the following permutation of conjugacy classes of \(\text {O}'\text {N}.2\): \(\pi = 15(ab)16(ab)8(bc)10(bc)24(ab)30(ab)56(ab)56(cd)\). We note that \(\pi \) is an automorphism of the ordinary character table that switches the 7th and 8th ordinary irreducibles of degree 26752 while fixing the other nodes of the Brauer tree under consideration. Accordingly, we may suppose that the Brauer tree has the following form.

We further observe that the restriction of \(\pi \) to the 3-regular classes is an automorphism of the 3-modular character table of \(\text {O}'\text {N}.2\), which means that any relabeling of conjugacy classes that are necessary to ensure that the 5-modular Brauer tree is as given above does not result in a change to the 3-modular character table computed in earlier sections. In other words, our descriptions of the 3-modular and 5-modular character tables of \(\text {O}'\text {N}.2\) are compatible. A detailed discussion of character table automorphisms as label permutations and compatibility of character tables is available in Sect. 10 of [12].

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lux, K., Ryba, A. (2019). The 3-Modular Character Table of the Automorphism Group of the Sporadic Simple O’Nan Group. In: Feldvoss, J., Grimley, L., Lewis, D., Pavelescu, A., Pillen, C. (eds) Advances in Algebra. SRAC 2017. Springer Proceedings in Mathematics & Statistics, vol 277. Springer, Cham. https://doi.org/10.1007/978-3-030-11521-0_12

Download citation

Publish with us

Policies and ethics