Skip to main content

Tests of General Relativity with the LARES Satellites

  • Chapter
  • First Online:
  • 990 Accesses

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 196))

Abstract

LARES (LAser RElativity Satellite) developed by the Italian Space Agency (ASI) is a laser-ranged satellite successfully launched in February 2012 by ESA (European Space Agency). A second ASI laser-ranged satellite, LARES 2, is scheduled for launch by ESA at the end of 2019. Here we describe the main scientific objectives achieved and achievable by LARES and LARES 2, both in General Relativity and in space geodesy and geodynamics. Among the main tests achieved by LARES is a 5% test of frame-dragging, a fundamental and intriguing prediction of General Relativity. The LARES 2 satellite together with the laser-ranged satellite LAGEOS of NASA, is aimed to provide a 0.2% test of frame-dragging together with other relevant tests and determinations in fundamental physics, space geodesy and geodynamics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. I. Ciufolini, A. Paolozzi, E. C. Pavlis, R. Koenig, J. Ries, V. Gurzadyan, R. Matzner, R. Penrose, G. Sindoni, C. Paris, H. Khachatryan, S. Mirzoyan, A test of general relativity using the LARES and LAGEOS satellites and a GRACE Earth gravity model. Measurement of Earth’s dragging of inertial frames. Eur. Phys. J. 76, 120 (2016)

    Google Scholar 

  2. A. Paolozzi, I. Ciufolini, LARES successfully launched in orbit: satellite and mission description. Acta Astronautica 91, 313–321 (2013)

    Article  ADS  Google Scholar 

  3. M.R. Pearlman, J.J. Degnan, J.M. Bosworth, The international laser ranging service. Adv. Space Res. 30, 135143 (2002)

    Article  Google Scholar 

  4. S.C. Cohen, R.W. King, R. Kolenkiewicz, R.D. Rosen, B.E. Schutz (Eds.), LAGEOS scientific results. J. Geophys. Res. 90(B11), 9215–9438 (1985)

    Google Scholar 

  5. B.D. Tapley, S. Bettadpur, M. Watkins, C. Reigber, The gravity recovery and climate experiment: mission overview and early results. Geophys. Res. Lett. 31(9) (2004)

    Article  Google Scholar 

  6. K.S. Thorne, R.H. Price, D.A. Macdonald, The Membrane Paradigm (Yale University Press, NewHaven, 1986)

    MATH  Google Scholar 

  7. I. Ciufolini, Dragging of inertial frames. Nature 449, 41 (2007)

    Article  ADS  Google Scholar 

  8. A. Einstein, Gravitation, in Letter to Ernst Mach, 25 June 1913, ed. by C. Misner, K.S. Thorne, J.A. Wheeler (Freeman, San Francisco, 1973), p. 544

    Google Scholar 

  9. B.P. Abbott et al. Binary Black Hole Mergers in the first Advanced LIGO Observing Run. Phys. Rev. X 6, 041015 (2016)

    Google Scholar 

  10. J.M. Bardeen, J.A. Petterson, The Lense-Thirring effect and accretion disks around Kerr black holes. ApJ 195, L65 (1975)

    Article  ADS  Google Scholar 

  11. C. Nixon, A. King, Do jets precess... or even move at all? ApL 765, L7 (2013)

    Google Scholar 

  12. I. Ciufolini, J.A. Wheeler, Gravitation and Inertia (Princeton University Press, Princeton, 1995)

    MATH  Google Scholar 

  13. J. Lense, H. Thirring, Über den Einfluss der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie. Phys. Z. 19, 156–163 (1918)

    MATH  Google Scholar 

  14. J. Lense, H. Thirring, English translation of [13] by B. Mashhoon, F.W. Hehl, D.S. Theiss. Gen. Relativ. Gravit. 16, 711 (1984)

    Google Scholar 

  15. I. Ciufolini et al., Test of general relativity and measurement of the Lense-Thirring effect with two Earth satellites. Science 279(5359), 2100–2103 (1998)

    Article  ADS  Google Scholar 

  16. I. Ciufolini, E.C. Pavlis, A confirmation of the general relativistic prediction of the Lense-Thirring effect. Nature 431, 958–960 (2004)

    Article  ADS  Google Scholar 

  17. I. Ciufolini, E.C. Pavlis, R. Peron, Determination of frame-dragging using Earth gravity models from CHAMP and GRACE. New Astron. 11, 527–550 (2006)

    Article  ADS  Google Scholar 

  18. I. Ciufolini, E.C. Pavlis, J. Ries, R. Koenig, G. Sindoni, A. Paolozzi, H. Neumayer, Gravitomagnetism and its measurement with laser ranging to the LAGEOS satellites and GRACE Earth gravity models, in General Relativity and John Archibald Wheeler, vol. 367 (Springer GmbH, Berlino DEU, 2010), pp. 371434

    Google Scholar 

  19. J.C. Ries, R.J. Eanes, M.M. Watkins, Confirming the framedragging effect with satellite laser ranging, in 16th international workshop on laser ranging, Poznan, Poland, 1317 October 2008 (2008)

    Google Scholar 

  20. J. Ries, Relativity in satellite laser ranging, in IAU Symposium 261. Relativity in fundamental astronomy: dynamics, reference frames, and data analysis (Virginia Beach, VA, USA, 27 April–1 May 2009)

    Google Scholar 

  21. R. König, B. Moreno-Monge, G. Michalak, Some aspects and perspectives of measuring Lense-Thirring with GNSS and geodetic satellites, in Second International LARES Science Workshop, Accademia dei Lincei, Rome (2012)

    Google Scholar 

  22. R. König, I. Ciufolini, Measurement of frame-dragging with geodetic satellites based on gravity field models from CHAMP, GRACE and beyond, in Current Volume

    Google Scholar 

  23. I. Ciufolini, A comprehensive introduction to the LAGEOS gravimetric experiment. Int. J. Mod. Phys. A 4, 3083–3145 (1989)

    Article  ADS  Google Scholar 

  24. I. Ciufolini, On a new method to measure the gravitomagnetic field using two orbiting satellites. Nuovo Cimento A 109, 1709–1720 (1996)

    Article  ADS  Google Scholar 

  25. W.M. Kaula, Theory of Satellite Geodesy (Blaisdell, Waltham, 1966)

    MATH  Google Scholar 

  26. I. Ciufolini, On the orbit of the LARES satellite (2006). arXiv:gr-qc/0609081v1

  27. J. Ries, S. Bettadpur, R. Eanes, Z. Kang, U. Ko, C. McCullough, P. Nagel, N. Pie, S. Poole, T. Richter, H. Save, B. Tapley, Development and evaluation of the global gravity model GGM05. CSR-16-02, Center for Space Research. (The University of Texas at Austin, 2016)

    Google Scholar 

  28. I. Ciufolini, A. Paolozzi, E. Pavlis, J. Ries, R. Koenig, R. Matzner, G. Sindoni, The LARES space experiment: LARES orbit, error analysis and satellite structure, in General Relativity and John Archibald Wheeler, vol. 367 (Springer-Verlag GmbH, Berlino - DEU, 2010), pp. 467–492

    Google Scholar 

  29. I. Ciufolini et al., Reply to “A comment on “A test of general relativity using the LARES and LAGEOS satellites and a GRACE Earth gravity model, ed. by I. Ciufolini et al.,” Iorio”. EPJ C 78, 880 (2018)

    Google Scholar 

  30. I. Ciufolini, B. Moreno Monge, A. Paolozzi, R. König, G. Sindoni, G. Michalak, Monte Carlo Simulations of the LARES space experiment to test General Relativity and fundamental physics. Class. Quantum Gravity 30, 235009 (2013)

    Article  ADS  Google Scholar 

  31. I. Ciufolini, A. Paolozzi, E.C. Pavlis, G. Sindoni, R. Koenig, J.C. Ries, R. Matzner, V. Gurzadyan, R. Penrose, D. Rubincam, C. Paris, A new laser-ranged satellite for General Relativity and space geodesy: I. An introduction to the LARES 2 space experiment. Eur. Phys. J. Plus 132(8), 336 (2017)

    Google Scholar 

  32. I. Ciufolini, E.C. Pavlis, G. Sindoni, J.C. Ries, A. Paolozzi, R. Matzner, R. Koenig, C. Paris, A new laser-ranged satellite for General Relativity and space geodesy: II. Monte Carlo simulations and covariance analyses of the LARES 2 experiment. Eur. Phys. J. Plus 132(8), 337 (2017)

    Google Scholar 

  33. I. Ciufolini, R. Matzner, V.G. Gurzadyan, R. Penrose, A new laser-ranged satellite for General Relativity and space geodesy: III. De Sitter effect and the LARES 2 space experiment. Eur. Phys. J. C 77, 819 (2017)

    Google Scholar 

  34. I. Ciufolini, R.A. Matzner, J. Feng, D.P. Rubincam, E.C. Pavlis, J.C. Ries, G. Sindoni, A. Paolozzi, C. Paris, A new laser-ranged satellite for General Relativity and Space Geodesy IV. Thermal drag and the LARES 2 space experiment. Eur. Phys. J. Plus 133, 333 (2018)

    Google Scholar 

  35. I. Ciufolini, Measurement of the Lense-Thirring drag on high-altitude laser-ranged artificial satellites. Phys. Rev. Lett. 56, 278–281 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  36. I. Ciufolini, Theory and Experiments in General Relativity and other Metric Theories. Ph.D. Dissertation, Univ. of Texas, Austin, Pub. Ann Arbor, Michigan, 1984

    Google Scholar 

  37. B. Tapley, J.C. Ries, R.J. Eanes, M.M. Watkins, NASA-ASI Study on LAGEOS III. Center for Space Research Report CSR-89-03, The University of Texas at Austin (1989)

    Google Scholar 

  38. I. Ciufolini et al., ASI-NASA Study on LAGEOS III (CNR, Rome, Italy, 1989)

    Google Scholar 

  39. J.C. Ries. Simulation of an experiment to measure the Lense-Thirring precession using a second LAGEOS satellite. Ph.D. Dissertation, Center for Space Research Report CSR-89-05, The University of Texas at Austin (1989)

    Google Scholar 

  40. G.E. Peterson. Estimation of the Lense-Thirring precession using laser-ranged satellites. Ph.D. Dissertation, The University of Texas at Austin (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignazio Ciufolini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ciufolini, I. et al. (2019). Tests of General Relativity with the LARES Satellites. In: Puetzfeld, D., Lämmerzahl, C. (eds) Relativistic Geodesy. Fundamental Theories of Physics, vol 196. Springer, Cham. https://doi.org/10.1007/978-3-030-11500-5_15

Download citation

Publish with us

Policies and ethics