Skip to main content

On the Applicability of the Geodesic Deviation Equation in General Relativity

  • Chapter
  • First Online:

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 196))

Abstract

Within the theory of General Relativity, we study the solution and range of applicability of the standard geodesic deviation equation in highly symmetric spacetimes. In the Schwarzschild spacetime, the solution is used to model satellite orbit constellations and their deviations around a spherically symmetric Earth model. We investigate the spatial shape and orbital elements of perturbations of circular reference curves. In particular, we reconsider the deviation equation in Newtonian gravity and then determine relativistic effects within the theory of General Relativity by comparison. The deviation of nearby satellite orbits, as constructed from exact solutions of the underlying geodesic equation, is compared to the solution of the geodesic deviation equation to assess the accuracy of the latter. Furthermore, we comment on the so-called Shirokov effect in the Schwarzschild spacetime and limitations of the first order deviation approach.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Planets do not possess any net charge, therefore we do not consider charged solutions like, for example, the Reissner–Nordstrøm spacetime.

  2. 2.

    W.r.t. Eq. (19) we have slightly redefined the constant parameters \(C_{(1, \ldots , 6)}\) in a way such that \(\eta ^r(s) = g(s)\). This is always possible since all coefficients preceding the functions f(s) and g(s) in (19) are constant because the reference radius R is constant.

  3. 3.

    Note the misprint in Eq. (4.14) in [13], where actually the inverse value of the correct result is shown and we assume this to be simply a typo.

References

  1. F. Flechtner, K.-H. Neumayer, C. Dahle, H. Dobslaw, E. Fagiolini, J.-C. Raimondo, A. Guentner, What can be expected from the GRACE-FO laser ranging interferometer for earth science applications? Surv. Geophys. 37, 453 (2016)

    Article  ADS  Google Scholar 

  2. B.D. Loomis, R.S. Nerem, S.B. Luthcke, Simulation study of a follow-on gravity mission to GRACE. J. Geod. 86, 319 (2012)

    Article  ADS  Google Scholar 

  3. M.F. Shirokov, On one new effect of the Einsteinian theory of gravitation. Gen. Relativ. Gravit. 4, 131 (1973)

    Article  ADS  Google Scholar 

  4. D. Philipp, V. Perlick, C. Lämmerzahl, K. Deshpande, On geodesic deviation in Schwarzschild spacetime, in IEEE Metrology for Aerospace (2015), p. 198

    Google Scholar 

  5. P.J. Greenberg, The equation of geodesic deviation in Newtonian theory and the oblateness of the earth. Nuovo Cimento 24B, 272 (1974)

    Article  ADS  Google Scholar 

  6. W.G. Dixon, The new mechanics of Myron Mathisson and its subsequent development, in Equations of Motion in Relativistic Gravity, ed. by D. Puetzfeld et al. Fundamental theories of Physics, vol. 179 (Springer, Berlin, 2015), p. 1

    Google Scholar 

  7. Y.N. Obukhov, D. Puetzfeld, Multipolar test body equations of motion in generalized gravity theories, in Equations of Motion in Relativistic Gravity, ed. by D. Puetzfeld et al. Fundamental theories of Physics, vol. 179 (Springer, Berlin, 2015), p. 67

    Chapter  Google Scholar 

  8. D. Puetzfeld, Y.N. Obukhov, Generalized deviation equation and determination of the curvature in general relativity. Phys. Rev. D 93, 044073 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  9. H. Fuchs, Conservation laws for test particles with internal structure. Annalen der Physik 34, 159 (1977)

    Article  ADS  Google Scholar 

  10. H. Fuchs, Solutions of the equations of geodesic deviation for static spherical symmetric space-times. Annalen der Physik 40, 231 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  11. R. Kerner, J.W. van Holten, R. Colistete Jr., Relativistic epicycles: another approach to geodesic deviations. Class. Quantum Gravity 18, 4725 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  12. G. Koekoek, J.W. van Holten, Epicycles and Poincaré resonances in general relativity. Phys. Rev. D 83, 064041 (2011)

    Article  ADS  Google Scholar 

  13. H. Fuchs, Deviation of circular geodesics in static spherically symmetric space-times. Astron. Nachr. 311, 271 (1990)

    Article  ADS  Google Scholar 

  14. C. Misner, K. Thorne, J.A. Wheeler, Gravitation (Freeman, San Francisco, 1973)

    Google Scholar 

  15. A. Einstein, Die Grundlage der allgemeinen Relativitätstheorie. Annalen der Physik 354, 769 (1916)

    Article  ADS  Google Scholar 

  16. A.R. Forsyth, Note on the central differential equation in the relativity theory of gravitation. Proc. R. Soc. Lond. A 97(682), 145 (1920)

    Article  ADS  Google Scholar 

  17. W.B. Morton, LXI. The forms of planetary orbits on the theory of relativity. Lond. Edinb. Dublin Philos. Mag. J. Sci. 42(250), 511 (1921)

    Article  Google Scholar 

  18. E. Hackmann, C. Lämmerzahl, Complete analytic solution of the geodesic equation in Schwarzschild (anti-)de Sitter spacetimes. Phys. Rev. Lett. 100, 171101 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  19. E. Hackmann, C. Lämmerzahl, Geodesic equation in Schwarzschild-(anti-)de Sitter space-times: analytical solutions and applications. Phys. Rev. D 78 (2008)

    Google Scholar 

  20. E. Hackmann, V. Kagramanova, J. Kunz, C. Lämmerzahl, Analytic solutions of the geodesic equation in axially symmetric space-times. Europhys. Lett. 88, 30008 (2009)

    Article  ADS  Google Scholar 

  21. A. Nduka, On Shirokov’s one new effect of the Einsteinian theory of gravitation. Gen. Relativ. Gravit. 8, 347 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  22. Yu.S. Vladimirov, R.V. Rodichev, Small oscillations of test bodies in circular orbits in the Schwarzschild and Kerr metrics (Shirokov’s effect). Sov. Phys. J. 24, 954 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  23. W. Zimdahl, Shirokov effect and gravitationally induced supercurrents. Exp. Tech. Phys. 33, 403 (1985)

    Google Scholar 

  24. L. Bergamin, P. Delva, A. Hees, Vibrating systems in Schwarzschild spacetime: toward new experiments in gravitation? Class. Quantum Gravity 26, 18006 (2009)

    Article  MathSciNet  Google Scholar 

  25. W. Zimdahl, G.M. Gilberto, Temperature oscillations of a gas in circular geodesic motion in the Schwarzschild field. Phys. Rev. D 91, 024003 (2015)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The present work was supported by the Deutsche Forschungsgemeinschaft (DFG) through the grant PU 461/1-1 (D.P.), the Sonderforschungsbereich (SFB) 1128 Relativistic Geodesy and Gravimetry with Quantum Sensors (geo-Q), and the Research Training Group 1620 Models of Gravity. We also acknowledge support by the German Space Agency DLR with funds provided by the Federal Ministry of Economics and Technology (BMWi) under grant number DLR 50WM1547.

The authors would like to thank V. Perlick, J.W. van Holten, and Y.N. Obukhov for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis Philipp .

Editor information

Editors and Affiliations

A Conventions and Symbols

A Conventions and Symbols

In the following we summarize our conventions, and collect some frequently used formulas. A directory of symbols used throughout the text can be found in Table 3. The signature of the spacetime metric is assumed to be \((+,-,-,-)\). Latin indices \(i,j,k,\ldots \) are spacetime indices and take values \(0 \ldots 3\). For an arbitrary k-tensor \(T_{a_1 \ldots a_k}\), the symmetrization and antisymmetrization are defined by

$$\begin{aligned} T_{(a_1\ldots a_k)}:= & {} {\frac{1}{k!}}\sum _{I=1}^{k!}T_{\pi _I\!\{a_1\ldots a_k\}},\end{aligned}$$
(71)
$$\begin{aligned} T_{[a_1\ldots a_k]}:= & {} {\frac{1}{k!}}\sum _{I=1}^{k!}(-1)^{|\pi _I|}T_{\pi _I\!\{a_1\ldots a_k\}}, \end{aligned}$$
(72)

where the sum is taken over all possible permutations (symbolically denoted by \(\pi _I\!\{a_1\ldots a_k\}\)) of its k indices.

The covariant derivative defined by the Riemannian connection is conventionally denoted by the nabla or by the semicolon: \(\nabla _a =\)\( {}_{;a}\)”. Our conventions for the Riemann curvature are as follows:

$$\begin{aligned}&2 A^{c_1 \ldots c_k}{}_{d_1 \ldots d_l ; [ba] } \equiv 2 \nabla _{[a} \nabla _{b]} A^{c_1 \ldots c_k}{}_{d_1 \ldots d_l} \nonumber \\&= \sum ^{k}_{i=1} R_{abe}{}^{c_i} A^{c_1 \ldots e \ldots c_k}{}_{d_1 \ldots d_l} - \sum ^{l}_{j=1} R_{abd_j}{}^{e} A^{c_1 \ldots c_k}{}_{d_1 \ldots e \ldots d_l}. \end{aligned}$$
(73)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Philipp, D., Puetzfeld, D., Lämmerzahl, C. (2019). On the Applicability of the Geodesic Deviation Equation in General Relativity. In: Puetzfeld, D., Lämmerzahl, C. (eds) Relativistic Geodesy. Fundamental Theories of Physics, vol 196. Springer, Cham. https://doi.org/10.1007/978-3-030-11500-5_13

Download citation

Publish with us

Policies and ethics