Skip to main content

Can Spacetime Curvature be Used in Future Navigation Systems?

  • Chapter
  • First Online:
  • 983 Accesses

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 196))

Abstract

We argue that the curvature generated by a gravitational field can be used to calculate the corresponding metric which determines the trajectories of freely falling test particles. To this end, we present a method to compute the metric from a given curvature tensor. We use Petrov’s classification to handle the structure and properties of the curvature tensor, and Cartan’s structure equations in an orthonormal tetrad to investigate the differential equations that relate the curvature with the metric. The second structure equation is integrated to obtain the explicit expression for the connection \(1-\)form from which the components of the orthonormal tetrad are obtained by using the first structure equation. This opens the possibility of using the curvature of astrophysical objects like the Earth to determine the position of freely falling satellites that are used in modern navigation systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. J.L. Synge, Relativity: The General Theory (North-Holland, Amsterdam, 1960)

    MATH  Google Scholar 

  2. F.A.E. Pirani, Acta Phys. Pol. 15, 389 (1956)

    ADS  Google Scholar 

  3. P. Szekeres, J. Math. Phys. 6, 1387 (1965)

    Article  ADS  Google Scholar 

  4. D. Puetzfeld, Y.N. Obukhov, Phys. Rev. D 93, 044073 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  5. K.S. Thorne, C.W. Misner, J.A. Wheeler, Gravitation (W. H. Freeman, San Francisco, 1973)

    Google Scholar 

  6. R. Debever, J. Geheniau, Bull. Acad. R. Soc. Belg. 42, 114 (1956)

    Google Scholar 

  7. H. Quevedo, Gen. Relativ. Gravit. 24, 693 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  8. M. Demiański, Phys. Lett. A 42, 157 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  9. M. Cahen, L. Defrise, Commun. Math. Phys. 11, 16 (1968)

    Article  ADS  Google Scholar 

  10. M. MacCallum, C. Hoenselaers, H. Stephani, D. Kramer, E. Herlt, Exact Solutions of Einstein’s Field Equations (Cambridge University Press, Cambridge, 2003)

    MATH  Google Scholar 

Download references

Acknowledgements

This work has been supported by the UNAM-DGAPA-PAPIIT, Grant No. IN111617.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hernando Quevedo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Quevedo, H. (2019). Can Spacetime Curvature be Used in Future Navigation Systems?. In: Puetzfeld, D., Lämmerzahl, C. (eds) Relativistic Geodesy. Fundamental Theories of Physics, vol 196. Springer, Cham. https://doi.org/10.1007/978-3-030-11500-5_11

Download citation

Publish with us

Policies and ethics