Defining an Innovative Design Method Based on the Life Cycle Approach

  • Francesca ThiébatEmail author
Part of the PoliTO Springer Series book series (PTSS)


This chapter will illustrate an experimental design model that can be used to produce two different outcomes based on two levels of assessments. This tool is called the Life Cycle Design Model (LCDM).


  1. Arbizzani E (2015) Tecnica e tecnologia dei sistemi edilizi. Maggioli, Santarcangelo di Romagna (RN)Google Scholar
  2. Ashby MF (2009) Materials and the environment: eco-informed material choice. Elsevier, OxfordGoogle Scholar
  3. Ashby MF, Johnson K (2002) Materials and design: the art and science of material selection in product design. Elsevier, OxfordGoogle Scholar
  4. Banham R (1969) The architecture of the well-tempered environment. Press, Londra, ArchGoogle Scholar
  5. Davis Langdon Management Consulting. Life Cycle Costing (LCC) as a Contribution to Sustainable Construction: A Common Methodology—Final Methodology (2007). Accessed on 16 Sept 2018
  6. Dodd N, Cordella M, Traverso M, Donatello S (2017) Level(s)—A common EU framework of core sustainability indicators for office and residential buildings, Part 1, 2 and 3, European Commission, JRCGoogle Scholar
  7. El khouli S, John V, Zeumer M (2015) Sustainable construction techniques. DETAIL Green BooksGoogle Scholar
  8. EMSD, ARUP, Life Cycle Assessment (LCA) and Life Cycle Costing (LCC) Tool for Commercial Building Developments in Hong Kong—User Manual (2005)Google Scholar
  9. Eyre N, Downing T, Hoekstra R, Rennings K (1999) ExternE, externalities of energy. Global warming, European Commission, vol 8Google Scholar
  10. European Commission (June 2003) Task group 4: life cycle costs in construction. Final reportGoogle Scholar
  11. Finkbeiner M, Schau EM, Lehmann A, Traverso M (2010) Towards life cycle sustainability assessment. Sustainability 2(10):3309–3322CrossRefGoogle Scholar
  12. German Sustainability Building Council, “DGNB System” (2015).
  13. Giordano R (2010) I Prodotti per l’edilizia sostenibile.La compatibilità ambientale dei materiali nel processo edilizio, SistemiEditoriali, NapoliGoogle Scholar
  14. GRANTA DESIGN Limited, Cambridge Engineering Selector, CES 2019. Access on 5 Dec 2018
  15. Gropius W (1962) Scape of total architecture. Collier Books, New YorkGoogle Scholar
  16. Huppes G, Ciroth A, Lichtenvort K, Rebitzer G, Schmith W, Seuring S (2008) Modelling for life cycle costing. In: Hunkeler D, Rebitzer G, Lichtenvort K (eds) Environmental life cycle costing. CRC Press, New YorkGoogle Scholar
  17. Hunkeler D, Rebitzer G, Lichtenvort K (eds) (2008) Environmental life cycle costing. CRC Press, New YorkGoogle Scholar
  18. ISO 14040:2006 Environmental management—Life cycle assessment—Principles and frameworkGoogle Scholar
  19. ISO 14044:2006 Environmental management—Life cycle assessment—Requirements and guidelinesGoogle Scholar
  20. ISO 15686-5:2017 Building and constructed assets—Service life planning—Life cycle costingGoogle Scholar
  21. König H, Kohler N, Kreissig J, Lützkendorf T (2010) A life cycle approach to buildings. Principles, calculations, design tools. Detail Green BooksGoogle Scholar
  22. LCA software “SimaPro” PRé Sustainability. Access on 5 Dec 2018
  23. Mateus R, Bragança L (2011) Sustainability assessment and rating of buildings: developing the methodology SBToolPT–H. Build Environ 46(10):1962–1971CrossRefGoogle Scholar
  24. Molinari C (2002) La manutenzione come requisito di progetto. Sistemi Editoriali, NapoliGoogle Scholar
  25. NIST (2000): BEES 2.0: Building for environmental and economic sustainability technical manual and user guide. NISTIR 6520. National Institute of Standards and Technology (NIST), Gaithersburg, MD, USAGoogle Scholar
  26. Notarnicola B, Tassielli G, Renzulli PA (2015) Valutazione economica: gli effetti sanitari come esternalità negativa. In: Assennato G (ed) Valutazione economica degli effetti sanitari dell'inquinamento atmosferico: la metodologia dell’EEA. Atti del workshop di Taranto, 23/24 luglio 2012. Ledizioni, Milano, p.75–96Google Scholar
  27. Østergård T, Jensen RL, Maagaard S (2016) Building simulations supporting decision making in early design: a review. Renew Sustain Energy Rev 61(August):187–201CrossRefGoogle Scholar
  28. Pearce DW, Turner RK (1991) Economics of natural resources and the environment. The Johns Hopkins University Press, BaltimoreGoogle Scholar
  29. Pombo O, Rivela B, Neila J (2016) The challenge of sustainable building renovation: assessment of current criteria and future outlook. J Clean Prod 123CrossRefGoogle Scholar
  30. Pombo O, Allacker K, Rivela B, Neila J (2016b) Sustainability assessment of energy saving measures: a multi-criteria approach for residential buildings retrofitting—A case study of the Spanish housing stock. Energy Build 116:384–394CrossRefGoogle Scholar
  31. Settanni E, Notarnicola B, Tassielli G (2012) Life cycle costing (LCC). In Fogel D, Fredericks S, Spellerberg I (eds) The encyclopedia of sustainability, Vol 6: measurements, indicators, and research methods for sustainability, pp 221–224. Berkshire Publishing, Great Barrington, MA.Google Scholar
  32. Steen B (1999) A systematic approach to environmental priority strategies in product development (EPS). Version 2000-Models and data of the default method; CPM report 1999:5, Chalmers University of Technology, Gothenburg, SwedenGoogle Scholar
  33. Steen B, Hoppe H, Hunkeler D, Lichtenvort K, Schmidt W, Spindler E (2008) Integrating external effects into life cycle costing. In: Hunkeler D, Rebitzer G, Lichtenvort K (eds) Environmental life cycle costing. CRC Press, New YorkGoogle Scholar
  34. Swarr T, Hunkeler D (2008) Life cycle costing in life cycle management. In: Hunkeler D, Rebitzer G, Lichtenvort K (eds) Environmental life cycle costing. CRC Press, New YorkGoogle Scholar
  35. Swiss Ecoinvent Centre (2007); Frischknecht R, Jungbluth N (eds), Althaus H-J, Doka G, Dones R, Heck T, Hellweg S, Hischier R, Nemecek T, Rebitzer G, Spielmann M, Wernet G (2007) Ecoinvent Report No 1: Overview and methodology for the ecoinvent database v. 2.0. Dübendorf.
  36. Thiébat F (2009) Architettura e sostenibilità: sviluppo di un modello economico-ambientale. PhD dissertation, XXI cycle, Politecnico di TorinoGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Dipartimento di Architettura e Design (DAD)Politecnico di TorinoTurinItaly

Personalised recommendations