Life Cycle and Sustainability: Concepts and Keywords

  • Francesca ThiébatEmail author
Part of the PoliTO Springer Series book series (PTSS)


This chapter focuses on the link between the life cycle design approach and the concept of “sustainability”. By reviewing specific keywords it will define the principle of sustainable life cycle design. Starting with this concept the chapter will investigate the state of the art and the role in the design process of regulations, laws, environmental protocols, integrated design tools and software, and the assessment of sustainability in construction. It takes into account both the international scenario and its application in Italy.


  1. Alberti LB (1585) De re aedificatoria. On the art of building in ten books. (translated by Joseph Rykwert, Robert Tavernor and Neil Leach). Cambridge, Massachusetts: MIT Press, 1988Google Scholar
  2. Attia S, Gratia E, De Herde A, Hensen JLM (2012) Simulation-based decision support tool for early stages of zero-energy building design. Energy Build 49:2–15CrossRefGoogle Scholar
  3. Banham R (1969) The architecture of the well-tempered environment. Arch Press, LondraGoogle Scholar
  4. Battaglia A (a cura di) (2006) Saint-John Perse, Uccelli, Ed. dell’Orso, AlessandriaGoogle Scholar
  5. Blachère G (1969) Savoir batir. Eyrolles, ParisGoogle Scholar
  6. Bocco A, Cavaglià G (2008) Cultura tecnologica dell'architettura. Pensieri e parole, prima dei disegni, Carocci, RomaGoogle Scholar
  7. Brundtland GH (1987) Our common future: report of the world commission on environment and development. Oxford University PressGoogle Scholar
  8. Cheung FKT, Rihan J, Tah J, Duce D, Kurul E (2012) Early stage multi-level cost estimation for schematic BIM models. Autom Constr 27:67–77CrossRefGoogle Scholar
  9. Ciribini G (1984) Tecnologia e progetto. Celid, TorinoGoogle Scholar
  10. Dalla Valle A, Lavagna M, Campioli A (2016) Strumenti LCA di supporto al settore delle costruzioni in X Convegno dell’Associazione Rete Italiana LCA 2016 Life Cycle Thinking, sostenibilità ed economia circolare Ravenna 23–24 giugno 2016Google Scholar
  11. Dodd N, Cordella M, Traverso M, Donatello S (2017) Level(s)—a common EU framework of core sustainability indicators for office and residential buildings, Part 1, 2 and 3. European Commission, JRCGoogle Scholar
  12. Drexler H, El Kohuli S (2012) Holistic housing. Concepts, design strategies and processes, DETAIL special, Munich, GermanyGoogle Scholar
  13. Gauzin-Muller D (2012) A short history of sustainable architecture. In: Drexler H, El Kohuli S (eds) Holistic housing. Concepts, design strategies and processes, DETAIL special, Munich, GermanyGoogle Scholar
  14. Georgiadou MC, Hacking T, Guthrie P (2012) A conceptual framework for future-proofing the energy performance of buildings. J Energy Policy 47:145–155CrossRefGoogle Scholar
  15. Giacchetta A, Magliocco A (2007) Progettazione sostenibile. Carocci editore, RomaGoogle Scholar
  16. Giordano R, Serra V, Demaria E, Duzel A (2017) Embodied energy versus operational energy in a nearly zero energy building case study. Energy Procedia 111:367–376CrossRefGoogle Scholar
  17. König H, Kohler N, Kreissig J, Lützkendorf T (2010) A life cycle approach to buildings. In: principles, calculations, design tools. Detail Green Books, RegensburgGoogle Scholar
  18. La Camera F (2003) Sviluppo sostenibile. Origini, teoria e pratica, Editori Riuniti, RomaGoogle Scholar
  19. Lavagna M (2008) Life cycle assessment in Edilizia, Hoepli, MilanoGoogle Scholar
  20. Manfron V, Siviero E (1998) Manutenzione delle costruzioni: progetto e gestione. UTET, TorinoGoogle Scholar
  21. Mendler SF, Odell W (2000) The HOK guidebook to sustainable design. Wiley, New YorkGoogle Scholar
  22. Moon H, Kim H, Kamat VR, Kang L (2015) BIM-based construction scheduling method using optimization theory for reducing activity overlaps. J Comput Civil Eng 29(3), Kim and Anderson 2012Google Scholar
  23. Nwodo MN, Anumba CJ, Asadi S (2017) BIM-based life cycle assessment and costing of buildings: current trends and opportunities. In: ASCE International Workshop on Computing in Civil EngineeringGoogle Scholar
  24. Østergård T, Jensen RL, Maagaard S (2016) Building simulations supporting decision making in early design: A review. Renew Sustain Energy Rev 61(August):187–201CrossRefGoogle Scholar
  25. Pearce DW, Turner RK (1990) Economics of natural resources and the environment. The Johns Hopkins University Press, BaltimoreGoogle Scholar
  26. Pitts A (2008) Future proof construction—future building and systems design for energy and fuel flexibility. J Energy Policy 36:4539–4543CrossRefGoogle Scholar
  27. PMBOK (2013) A guide to the project management body of knowledge (PMBOK Guide), 5th edn. Project-Management-Institute, Upper Darby, PAGoogle Scholar
  28. Rehman OU, Ryan MJ (2018) A framework for design for sustainable future-proofing. J Clean Prod 170:715–726CrossRefGoogle Scholar
  29. Ryan MJ (2014) Design for system retirement. J Clean Prod 70:203–210CrossRefGoogle Scholar
  30. Sinopoli N (2004) La tecnologia invisibile. Il processo di produzione dell’architettura e le sue regie, Angeli, MilanoGoogle Scholar
  31. Steele J (2005) Ecological architecture—a critical history. Thames and Hudson, NYGoogle Scholar
  32. Terzi C (2001) I Piani Della Luce, Domus, MilanoGoogle Scholar
  33. Thiébat F (2013) Life-cycle design for sustainable architecture. Techne J Technol Archit Environ 05:177–183Google Scholar
  34. Thiébat F, Cocina G (2018) The multidisciplinary approach for life cycle architecture. In: Abstract Book, 24th ISDRS Conference, Action for a Sustainable World: From Theory to Practice, Messina, Italy, 13–15 June 2018Google Scholar
  35. Tiezzi E, Marchettini N (1999) Che cos’è lo sviluppo sostenibile. Donzelli Editore, RomaGoogle Scholar
  36. Zanuso M, Tubi N, Weber H (ed) (1977), La progettazione integrata per l’edilizia industrializzata (cycle of general teaching debates), ITEC, MilanoGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Dipartimento di Architettura e Design (DAD)Politecnico di TorinoTurinItaly

Personalised recommendations