Skip to main content

Dyslipidemia in Ischemia/Reperfusion Injury

  • Chapter
  • First Online:
Bioactive Lipids in Health and Disease

Abstract

Ischemic heart disease is the main cause of morbidity and mortality in the developed world. Although reperfusion therapies are currently the best treatment for this entity, the restoration of blood flow leads, under certain circumstances, to a form of myocardial damage called reperfusion injury. Several studies have shown that age, sex, smoking, diabetes and dyslipidemia are risk factors for cardiovascular diseases. Among these risk factors, dyslipidemias are present in 40% of patients with ischemic heart disease and represent the clinical factor with the greatest impact on the prognosis of patients with cardiovascular diseases. It is known that during reperfusion the increase of the oxidative stress is perhaps one of the most important mechanisms implicated in cell damage. That is why several researchers have studied protective mechanisms against reperfusion injury, such as the ischemic pre- and post- conditioning, making emphasis mainly on the reduction of oxidative stress. However, few of these efforts have been successfully translated into the clinical setting. The controversial results in regards to the relation between cardioprotective mechanisms and dyslipidemia/hypercholesterolemia are mainly due to the difference among quality, composition and the time of administration of hypercholesterolemic diets, as well as the difference in the species used in each of the studies. Therefore, in order to compare results, it is crucial that all variables that could modify the obtained results are taken into consideration.

The authors Veronica D’Annunzio, Martin Donato, Tamara Zaobornyj, and Ricardo J. Gelpi are Member of the National Council of Scientific and Technological Research of Argentina (CONICET).

The authors Tamara Mazo and Virginia Perez are Fellowship of the National Council of Scientific and Technological Research of Argentina (CONICET).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M et al (2017) American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics-2017 update: a report from the American Heart Association. Circulation 135(10):e146–e603.

    Article  Google Scholar 

  2. GBD 2015 Risk Factors Collaborators (2016) Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388(10053):1659–1724. 

    Article  Google Scholar 

  3. Anitschokow N, Chalatow S (1983) On experimental cholesterin steatosis and its significant in the origin of some pathological procceses. Arteriosclerosis 3:178–183

    Article  Google Scholar 

  4. Shioji K, Nakamura H, Masutani H, Yodoi J (2003) Redox regulation by thioredoxin in cardiovascular diseases. Antioxid Redox Signal 5(6):795–802

    Article  CAS  Google Scholar 

  5. Turoczi T, Chang VW, Engelman RM, Maulik N, Ho YS, Das DK (2003) Thioredoxin redox signaling in the ischemic heart: an insight with transgenic miceoverexpressing Trx1. J Mol Cell Cardiol 35(6):695–704

    Article  CAS  Google Scholar 

  6. Perez V, D’Annunzio V, Valdez LB, Zaobornyj T, Bombicino S, Mazo T, Carbajosa NL, Gironacci MM, Boveris A, Sadoshima J, Gelpi RJ (2016) Thioredoxin-1 attenuates ventricular and mitochondrial postischemic dysfunction in the stunned myocardium of transgenic mice. Antioxid Redox Signal 25(2):78–88. 

    Article  CAS  Google Scholar 

  7. Tao L, Gao E, Bryan NS, Qu Y, Liu HR, Hu A, Christopher TA, Lopez BL, Yodoi J, Koch WJ, Feelisch M, Ma XL (2004) Cardioprotective effects of thioredoxin in myocardial ischemia and reperfusion: role of S-nitrosation [corrected]. Proc Natl Acad Sci U S A 101(31):11471–11476. Epub 2004 July 26

    Article  Google Scholar 

  8. D’Annunzio V, Perez V, Mazo T, Muñoz MC, Dominici FP, Carreras MC, Poderoso JJ, Sadoshima J, Gelpi RJ (2016) Loss of myocardial protection against myocardial infarction in middle aged transgenic mice overexpressing cardiac thioredoxin-1. Oncotarget 7(11):11889–11898.

    Google Scholar 

  9. Perez V, D’Annunzio V, Mazo T, Marchini T, Caceres L, Evelson P, Gelpi RJ (2016) Ischemic postconditioning confers cardioprotection and prevents reduction of Trx-1 in youngmice, but not in middle-aged and old mice. Mol Cell Biochem 415(1–2):67–76. 

    Article  CAS  Google Scholar 

  10. Perez V, D Annunzio V, Mazo T, Marchini T, Caceres L, Evelson P, Gelpi RJ (2016) Inhibition of endogenous thioredoxin-1 in the heart of transgenic mice does not confer cardioprotection in ischemic postconditioning. Int J Biochem Cell Biol 81(Pt B):315–322. 

    Article  CAS  Google Scholar 

  11. Afolabi OK, Oyewo EB, Adekunle AS, Adedosu OT, Adedeji AL (2013) Oxidative indices correlate with dyslipidemia and pro inflammatory cytokine levels in fluoride-exposed rats. Arh Hig Rada Toksikol 64(4):521–529.

    Article  CAS  Google Scholar 

  12. Littlejohns B, Pasdois P, Duggan S, Bond AR, Heesom K, Jackson CL, Angelini GD, Halestrap AP, Suleiman MS (2014) Hearts from mice fed a non-obesogenic high-fat diet exhibit changes in their oxidative state, calcium and mitochondria in parallel with increased susceptibility to reperfusion injury. PLoS One 9(6):e100579.

    Article  Google Scholar 

  13. Ferdinandy P, Hausenloy DJ, Heusch G, Baxter GF, Schulz R (2014) Interaction of risk factors, comorbidities, and comedications with ischemia/reperfusion injury and cardioprotection by preconditioning, postconditioning, and remote conditioning. Pharmacol Rev 66(4):1142–1174. 

    Article  CAS  Google Scholar 

  14. Dalen H, Thorstensen A, Romundstad PR, Aase SA, Stoylen A, Vatten LJ (2011) Cardiovascular risk factors and systolic and diastolic cardiac function:a tissue Doppler and speckle tracking echocardiographic study. J Am Soc Echocardiogr 24(3):322–32.e6. 

    Article  Google Scholar 

  15. Horio T, Miyazato J, Kamide K, Takiuchi S, Kawano Y (2003) Influence of low high-density lipoprotein cholesterol on left ventricular hypertrophy and diastolic function in essential hypertension. Am J Hypertens 16(11 Pt 1):938–944

    Article  CAS  Google Scholar 

  16. Huang Y, Walker KE, Hanley F, Narula J, Houser SR, Tulenko TN (2004) Cardiac systolic and diastolic dysfunction after a cholesterol-rich diet. Circulation 109(1):97–102. Epub 2003 Dec 15

    Article  CAS  Google Scholar 

  17. Varga ZV, Kupai K, Szűcs G, Gáspár R, Pálóczi J, Faragó N, Zvara A, Puskás LG, Rázga Z, Tiszlavicz L, Bencsik P, Görbe A, Csonka C, Ferdinandy P, Csont T (2013) MicroRNA- 25-dependent up-regulation of NADPH oxidase 4 (NOX4) mediateshypercholesterolemia- induced oxidative/nitrative stress and subsequent dysfunction in the heart. J Mol Cell Cardiol 62:111–121. 

    Article  CAS  Google Scholar 

  18. Csont T, Bereczki E, Bencsik P, Fodor G, Görbe A, Zvara A, Csonka C, Puskás LG, Sántha M, Ferdinandy P (2007) Hypercholesterolemia increases myocardial oxidative and nitrosative stress thereby leading to cardiac dysfunction in apoB-100 transgenic mice. Cardiovasc Res 76(1):100–109. Epub 2007 June 19

    Article  CAS  Google Scholar 

  19. Osipov RM, Bianchi C, Feng J, Clements RT, Liu Y, Robich MP, Glazer HP, Sodha NR, Sellke FW (2009) Effect of hypercholesterolemia on myocardial necrosis and apoptosis in the setting of ischemia-reperfusion. Circulation 120(11 Suppl):S22–S30. 

    Article  CAS  Google Scholar 

  20. Ferdinandy P, Szilvássy Z, Horváth LI, Csont T, Csonka C, Nagy E, Szentgyörgyi R, Nagy I, Koltai M, Dux L (1997) Loss of pacing-induced preconditioning in rat hearts: role of nitric oxide and cholesterol-enriched diet. J Mol Cell Cardiol 29(12):3321–3333

    Article  CAS  Google Scholar 

  21. Kupai K, Csonka C, Fekete V, Odendaal L, van Rooyen J, Marais de W, Csont T, Ferdinandy P (2009) Cholesterol diet induced hyperlipidemia impairs the cardioprotective effect of postconditioning: role of peroxynitrite. Am J Physiol Heart Circ Physiol 297(5):H1729–H1735. 

    Article  CAS  Google Scholar 

  22. Ungi I, Ungi T, Ruzsa Z, Nagy E, Zimmermann Z, Csont T, Ferdinandy P (2005) Hypercholesterolemia attenuates the anti ischemic effect of preconditioning during coronaryangioplasty. Chest 128(3):1623–1628

    Article  Google Scholar 

  23. Bountioukos M, Rizzello V, Krenning BJ, Bax JJ, Kertai MD, Vourvouri EC, Schinkel AF, Biagini E, Boersma E, Roelandt JR, Poldermans D (2003) Effect of atorvastatin on myocardial contractile reserve assessed by tissue Doppler imaging in moderately hypercholesterolemic patients without heart disease. Am J Cardiol 92(5):613–616

    Article  CAS  Google Scholar 

  24. Rubinstein J, Pelosi A, Vedre A, Kotaru P, Abela GS (2009) Hypercholesterolemia and myocardial function evaluated via tissue doppler imaging. Cardiovasc Ultrasound 7:56. 

    Article  Google Scholar 

  25. Wan S-H, Vogel MW, Chen HH (2014) Pre-clinical diastolic dysfunction. J Am Coll Cardiol 63(5):407–416

    Article  Google Scholar 

  26. Bastiaanse EM, Atsma DE, Kuijpers MM, Van der Laarse A (1994) The effect of sarcolemmal cholesterol content on intracellular calcium ion concentration in cultured cardiomyocytes. Arch Biochem Biophys 313(1):58–63

    Article  CAS  Google Scholar 

  27. Bencsik P, Sasi V, Kiss K, Kupai K, Kolossváry M, Maurovich-Horvat P, Csont T, Ungi I, Merkely B, Ferdinandy P (2015) Serum lipids and cardiac function correlate with nitrotyrosine and MMP activity in coronary arterydisease patients. Eur J Clin Invest 45(7):692–701. 

    Article  CAS  Google Scholar 

  28. Van de Velde M, DeWolff M, Leather HA, Wouters PF (2000) Effects of lipids on the functional and metabolic recovery from global myocardial stunning in isolated rabbit hearts. Cardiovasc Res 48(1):129–137

    Article  Google Scholar 

  29. Satoh K, Takaguri A, Itagaki M, Kano S, Ichihara K (2008) Effects of rosuvastatin and pitavastatin on ischemia-induced myocardial stunning in dogs. J Pharmacol Sci 106(4):593–599. Epub 2008 Apr 9

    Article  CAS  Google Scholar 

  30. D’Annunzio V, Donato M, Sabán M, Sanguinetti SM, Wikinski RL, Gelpi RJ (2005) Hypercholesterolemia attenuates postischemic ventricular dysfunction in the isolated rabbit heart. Mol Cell Biochem 273(1–2):137–143

    Article  Google Scholar 

  31. Calabresi L, Gomaraschi M, Villa B, Omoboni L, Dmitrieff C, Franceschini G (2002) Elevated soluble cellular adhesion molecules in subjects with low HDL-cholesterol. Arterioscler Thromb Vasc Biol 22(4):656–661

    Article  CAS  Google Scholar 

  32. Kalaivanisailaja J, Manju V, Nalini N (2003) Lipid profile in mice fed a high-fat diet after exogenous leptin administration. Pol J Pharmacol 55(5):763–769

    CAS  PubMed  Google Scholar 

  33. Adameova A, Harcarova A, Matejikova J, Pancza D, Kuzelova M et al (2009) Simvastatin alleviates myocardial contractile dysfunction and lethal ischemic injury in rat heart independent of cholesterol-lowering effects. Physiol Res 58(3):449–454

    CAS  PubMed  Google Scholar 

  34. Golino P, Maroko PR, Carew TE (1987) The effect of acute hypercholesterolemia on myocardial infarct size and the no- reflow phenomenon during coronary occlusion-reperfusion. Circulation 75(1):292–298

    Article  CAS  Google Scholar 

  35. Wang TD, Chen WJ, Su SS, Lo SC, Lin WW, Lee YT (2002) Increased cardiomyocyte apoptosis following ischemia and reperfusion in diet-induced hypercholesterolemia: relation to Bcl-2 and Bax proteins and caspase-3 activity. Lipids 37(4):385–394

    Article  CAS  Google Scholar 

  36. Szucs G, Bester DJ, Kupai K, Csont T, Csonka C, Esterhuyse AJ, Ferdinandy P, Van Rooyen J (2011) Dietary red palm oil supplementation decreases infarct size in cholesterol fed rats. Lipids Health Dis 10:103

    Article  CAS  Google Scholar 

  37. Wang W, Schulze CJ, Suarez-Pinzon WL, Dyck JR, Sawicki G, Schulz R (2002) Intracellular action of matrix metalloproteinase-2 accounts for acute myocardial ischemia and reperfusion injury. Circulation 106:1543–1549

    Article  CAS  Google Scholar 

  38. Donato M, D’Annunzio V, Berg G, Gonzalez G, Schreier L, Morales C, Wikinski RL, Gelpi RJ (2007) Ischemic postconditioning reduces infarct size by activation of A1 receptors and K+(ATP) channels in both normal and hypercholesterolemic rabbits. J Cardiovasc Pharmacol 49(5):287–292

    Article  CAS  Google Scholar 

  39. Lv Y, Ren Y, Sun L, Wang S, Wei M, Jia D (2013) Protective effect of Na(+)/Ca (2+) exchange blocker KB-R7943 on myocardial ischemia-reperfusion injury in hypercholesterolemic rats. Cell Biochem Biophys 66(2):357–363. 

    Article  CAS  Google Scholar 

  40. Mazo T, D’Annunzio V, Zaobornyj T, Perez V, Gomez A, Berg G, Barchuk M, Ossani G, Martinefski M, Tripodi V, Lago N, Gelpi RJ (2018) High-fat diet abolishes the cardioprotective effects of ischemic postconditioning in murine models despite increased thioredoxin-1 levels. Mol Cell Biochem. 

    Google Scholar 

  41. Iliodromitis EK, Andreadou I, Prokovas E, Zoga A, Farmakis D, Fotopoulou T, Ioannidis K, Paraskevaidis IA, Kremastinos DT (2010) Simvastatin in contrast to postconditioning reduces infarct size in hyperlipidemic rabbits: possible role of oxidative/nitrosative stress attenuation. Basic Res Cardiol 105(2):193–203. PMID: 20066537

    Article  CAS  Google Scholar 

  42. Ferdinandy P, Szilvássy Z, Horváth LI, Csont T, Csonka C, Nagy E, Szentgyörgyi R, Nagy I, Koltai M, Dux L (1997) Loss of pacing-induced preconditioning in rat hearts: role of nitric oxide and cholesterol-enriched diet. J Mol Cell Cardiol 29:3321–3333

    Article  CAS  Google Scholar 

  43. Szilvassy Z, Ferdinandy P, Nagy I, Jakab I, Koltai M (1997) The effect of continuous versus intermittent treatment with transdermal nitroglycerin on pacing-induced preconditioning in conscious rabbits. Br J Pharmacol 121:491–496

    Article  CAS  Google Scholar 

  44. Görbe A, Varga ZV, Kupai K, Bencsik P, Kocsis GF, Csont T, Boengler K, Schulz R, Ferdinandy P (2011) Cholesterol diet leads to attenuation of ischemic preconditioning-induced cardiac protection: the role of connexin 43. Am J Physiol Heart Circ Physiol 300(5):H1907–H1913. 

    Article  Google Scholar 

  45. Tang XL, Stein AB, Shirk G, Bolli R (2004) Hypercholesterolemia blunts NO donor-induced late preconditioning against myocardial infarction in conscious rabbits. Basic Res Cardiol 99:395–403

    Article  Google Scholar 

  46. Kyriakides ZS, Psychari S, Iliodromitis EK, Kolettis TM, Sbarouni E, Kremastinos DT (2002) Hyperlipidemia prevents the expected reduction of myocardial ischemia on repeated balloon inflations during angioplasty. Chest 121:1211–1215

    Article  Google Scholar 

  47. Ma LL, Kong FJ, Guo JJ, Zhu JB, Shi HT, Li Y, Sun RH, Ge JB (2017) Hypercholesterolemia abrogates remote ischemic preconditioning-induced cardioprotection: role of reperfusion injury salvage kinase signals. Shock 47(3):363–369. 

    Article  CAS  Google Scholar 

  48. D’Annunzio V, Donato M, Buchholz B, Pérez V, Miksztowicz V, Berg G, Gelpi RJ (2012) High cholesterol diet effects on ischemia-reperfusion injury of the heart. Can J Physiol Pharmacol 90(9):1185–1196. 

    Article  Google Scholar 

  49. Kremastinos DT, Bofilis E, Karavolias GK, Papalois A, Kaklamanis L, Iliodromitis EK (2000) Preconditioning limits myocardial infarct size in hypercholesterolemic rabbits. Atherosclerosis 150:81–89

    Article  CAS  Google Scholar 

  50. Iliodromitis EK, Zoga A, Vrettou A, Andreadou I, Paraskevaidis IA, Kaklamanis L, Kremastinos DT (2006) The effectiveness of postconditioning and preconditioning on infarct size in hypercholesterolemic and normal anesthetized rabbits. Atherosclerosis 188:356–376

    Article  CAS  Google Scholar 

  51. Kupai K, Csonka C, Fekete V, Odendaal L, van Rooyen J, Marais de W, Csont T, Ferdinandy P (2009) Cholesterol diet-induced hyperlipidemia impairs the cardioprotective effect of postconditioning: role of peroxynitrite. Am J Physiol Heart Circ Physiol 297(5):H1729–H1735. PMID: 19734363

    Article  CAS  Google Scholar 

  52. Afolabi OK, Oyewo E, Adekunle A, Adedosu OT, Adedeji AL (2013) Oxidative indices correlate with dyslipidemia and pro-inflammatory cytokine levels in fluoride-exposed rats. Arh Hig Rada Toksikol 64(4):521–529

    Article  CAS  Google Scholar 

  53. Kocsis GF, Csont T, Varga-Orvos Z, Puskas LG, Murlasits Z, Ferdinandy P (2010) Expression of genes related to oxidative/nitrosative stress in mouse hearts: effect of preconditioning and cholesterol diet. Med Sci Monit 16(1):BR32–BR39

    CAS  PubMed  Google Scholar 

  54. Penumathsa SV, Thirunavukkarasu M, Koneru S, Juhasz B, Zhan L, Pant R, Menon VP, Otani H, Maulik N (2007) Statin and resveratrol in combination induces cardioprotection against myocardial infarction in hypercholesterolemic rat. J Mol Cell Cardiol 42(3):508–516. 

    Article  CAS  Google Scholar 

  55. Penumathsa SV, Thirunavukkarasu M, Koneru S, Juhasz B, Zhan L et al (2007) Statin and resveratrol in combination induces cardioprotection against myocardial infarction in hypercholesterolemic rat. J Mol Cell Cardiol 42(3):508–516. 

    Article  CAS  Google Scholar 

  56. Cortassa S, Sollott SJ, Aon MA (2017) Mitochondrial respiration and ROS emission during β- oxidation in the heart: an experimental-computational study. PLoS Comput Biol 13(6):e1005588. 

    Article  Google Scholar 

  57. Mollazadeh H, Carbone F, Montecucco F, Pirro M, Sahebkar A (2018) Oxidative burden in familial hypercholesterolemia. J Cell Physiol 233(8):5716–5725. 

    Article  CAS  Google Scholar 

  58. Qin H, Zhang X, Ye F, Zhong L (2014) High-fat diet-induced changes in liver thioredoxin and thioredoxin reductase as a novel feature of insulin resistance. FEBS Open Biol 31(4):928–935

    Article  Google Scholar 

  59. Augusti PR, Quatrin A, Somacal S, Conterato GM, Sobieski R, Ruviaro AR, Maurer LH, Duarte MM, Roehrs M, Emanuelli T (2012) Astaxanthin prevents changes in the activities of thioredoxin reductase and paraoxonase in hypercholesterolemic rabbits. J Clin Biochem Nutr 51(1):42–49

    Article  CAS  Google Scholar 

  60. Somacal S, Figueiredo CG, Quatrin A, Ruviaro AR, Conte L, Augusti PR, Roehrs M, Denardin IT, Kasten J, da Veiga ML, Duarte MM, Emanuelli T (2015) The antiatherogenic effect of bixin in hypercholesterolemic rabbits is associated to the improvement of lipid profile and to its antioxidant and anti-inflammatory effects. Mol Cell Biochem 403(1–2):243–253

    Article  CAS  Google Scholar 

  61. Miwa K, Kishimoto C, Nakamura H, Makita T, Ishii K, Okuda N, Yodoi J, Sasayama S (2005) Serum thioredoxin and alpha-tocopherol concentrations in patients with major risk factors. Circ J 69(3):291–294

    Article  CAS  Google Scholar 

  62. Liu Y, Qu Y, Wang R, Ma Y, Xia C, Gao C, Liu J, Lian K, Xu A, Lu X, Sun L, Yang L, Lau WB, Gao E, Koch W, Wang H, Tao L (2012) The alternative crosstalkbetween RAGE and nitrativethioredoxin inactivation during diabetic myocardial ischemia-reperfusion injury. Am J Physiol Endocrinol Metab 303(7):E841–E852

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo J. Gelpi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mazo, T., D’Annunzio, V., Donato, M., Perez, V., Zaobornyj, T., Gelpi, R.J. (2019). Dyslipidemia in Ischemia/Reperfusion Injury. In: Trostchansky, A., Rubbo, H. (eds) Bioactive Lipids in Health and Disease. Advances in Experimental Medicine and Biology, vol 1127. Springer, Cham. https://doi.org/10.1007/978-3-030-11488-6_8

Download citation

Publish with us

Policies and ethics