Skip to main content

Characterization of Hydroxy and Hydroperoxy Polyunsaturated Fatty Acids by Mass Spectrometry

  • Chapter
  • First Online:
Book cover Bioactive Lipids in Health and Disease

Abstract

Lipids containing unsaturated doubles bonds are oxidized by enzymatic and non-enzymatic mechanisms yielding hydroperoxides and hydroxides as primary products.

This process has been implicated in physiological and pathological mechanisms. Thus, precise characterization and quantification of lipid oxidation products in biological samples can provide important mechanistic insights. In this context, the use of liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) to characterize the primary products of polyunsaturated fatty acids, like hydroxides and hydroperoxides, is a sensitive, specific and versatile tool. Here we will focus on the characterization and specific analysis of hydroxy and hydroperoxy regioisomers of linoleic acid, arachidonic acid, eicosapentaenoic acid and docosahexaenoic acid by LC-MS/MS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aldini G, Domingues MR, Spickett CM, Domingues P, Altomare A, Sánchez-Gómez FJ, Oeste CL, Pérez-Sala D (2015) Protein lipoxidation: detection strategies and challenges. Redox Biol 5:253–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Arita M (2012) Mediator lipidomics in acute inflammation and resolution. J Biochem 152:313–319

    Article  CAS  PubMed  Google Scholar 

  3. Astarita G, Kendall AC, Dennis EA, Nicolaou A (2015) Targeted lipidomic strategies for oxygenated metabolites of polyunsaturated fatty acids. Biochim Biophys Acta (BBA) – Mol Cell Biol Lipids 1851:456–468

    Article  CAS  Google Scholar 

  4. Bacellar IOL, Oliveira MC, Dantas LS, Costa EB, Junqueira HC, Martins WK, Durantini AM, Cosa G, Di Mascio P, Wainwright M, Miotto R, Cordeiro RM, Miyamoto S, Baptista MS (2018) Photosensitized membrane permeabilization requires contact-dependent reactions between photosensitizer and lipids. J Am Chem Soc 140:9606–9615

    Article  CAS  PubMed  Google Scholar 

  5. Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants, and aging. Cell 120:483–495

    Article  CAS  PubMed  Google Scholar 

  6. Barbosa-Sicard E, Markovic M, Honeck H, Christ B, Muller DN, Schunck WH (2005) Eicosapentaenoic acid metabolism by cytochrome P450 enzymes of the CYP2C subfamily. Biochem Biophys Res Commun 329:1275–1281

    Article  CAS  PubMed  Google Scholar 

  7. Barnham KJ, Masters CL, Bush AI (2004) Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discov 3:205–214

    Article  CAS  PubMed  Google Scholar 

  8. Beckman KB, Ames BN (1998) The free radical theory of aging matures. Physiol Rev 78:547–581

    Article  CAS  PubMed  Google Scholar 

  9. Brash AR (1999) Lipoxygenases: occurrence, functions, catalysis, and acquisition of substrate. J Biol Chem 274:23679–23682

    Article  CAS  PubMed  Google Scholar 

  10. Brigelius-Flohé R (1999) Tissue-specific functions of individual glutathione peroxidases. Free Radic Biol Med 27:951–965

    Article  PubMed  Google Scholar 

  11. Browne RW, Armstrong D (2000) HPLC analysis of lipid-derived polyunsaturated fatty acid peroxidation products in oxidatively modified human plasma. Clin Chem 46:829–836

    CAS  PubMed  Google Scholar 

  12. Calder PC (2006) n-3 Polyunsaturated fatty acids, inflammation, and inflammatory diseases. Am J Clin Nutr 83:1505S–1519S

    Article  CAS  PubMed  Google Scholar 

  13. Capdevila JH, Falck JR, Harris RC (2000) Cytochrome P450 and arachidonic acid bioactivation: molecular and functional properties of the arachidonate monooxygenase. J Lipid Res 41:163–181

    CAS  PubMed  Google Scholar 

  14. Davies P, Bailey PJ, Goldenberg MM, Ford-Hutchinson AW (1984) The role of arachidonic acid oxygenation products in pain and inflammation. Annu Rev Immunol 2:335–357

    Article  CAS  PubMed  Google Scholar 

  15. Derogis PBMC, Freitas FP, Marques ASF, Cunha D, Appolinario PP, de Paula F, Lourenco TC, Murgu M, Di Mascio P, Medeiros MHG, Miyamoto S (2013) The development of a specific and sensitive LC-MS-based method for the detection and quantification of hydroperoxy- and hydroxydocosahexaenoic acids as a tool for lipidomic analysis. PLoS One 8:e77561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Esterbauer H (1993) Cytotoxicity and genotoxicity of lipid-oxidation products. Am J Clin Nutr 57:779S–785S

    Article  CAS  PubMed  Google Scholar 

  17. Fer M, Dreano Y, Lucas D, Corcos L, Salaun JP, Berthou F, Amet Y (2008) Metabolism of eicosapentaenoic and docosahexaenoic acids by recombinant human cytochromes P450. Arch Biochem Biophys 471:116–125

    Article  CAS  PubMed  Google Scholar 

  18. Folcik VA, Nivar-Aristy RA, Krajewski LP, Cathcart MK (1995) Lipoxygenase contributes to the oxidation of lipids in human atherosclerotic plaques. J Clin Investig 96:504–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Frankel E (1984) Lipid oxidation: mechanisms, products and biological significance. J Am Oil Chem Soc 61:1908–1917

    Article  CAS  Google Scholar 

  20. Frankel EN (1991) Recent advances in lipid oxidation. J Sci Food Agric 54:495–511

    Article  CAS  Google Scholar 

  21. Funk CD (2001) Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294:1871–1875

    Article  CAS  PubMed  Google Scholar 

  22. Garscha U, Nilsson T, Oliw EH (2008) Enantiomeric separation and analysis of unsaturated hydroperoxy fatty acids by chiral column chromatography-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 872:90–98

    Article  CAS  PubMed  Google Scholar 

  23. Girotti AW (1998) Lipid hydroperoxide generation, turnover, and effector action in biological systems. J Lipid Res 39:1529–1542

    CAS  PubMed  Google Scholar 

  24. Guichardant M, Lagarde M (2009) Analysis of biomarkers from lipid peroxidation: a comparative study. Eur J Lipid Sci Technol 111:75–82

    Article  CAS  Google Scholar 

  25. Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now. J Neurochem 97:1634–1658

    Article  CAS  PubMed  Google Scholar 

  26. Halliwell B, Gutteridge JMC (2015) Free radicals in biology and medicine, 5th edn. Oxford University Press, New York

    Google Scholar 

  27. Hamberg M, Su C, Oliw E (1998) Manganese lipoxygenase – discovery of a bis-allylic hydroperoxide as product and intermediate in a lipoxygenase reaction. J Biol Chem 273:13080–13088

    Article  CAS  PubMed  Google Scholar 

  28. Han X, Gross RW (2005) Shotgun lipidomics: electrospray ionization mass spectrometric analysis and quantitation of cellular lipidomes directly from crude extracts of biological samples. Mass Spectrom Rev 24:367–412

    Article  CAS  PubMed  Google Scholar 

  29. Harizi H, Corcuff JB, Gualde N (2008) Arachidonic-acid-derived eicosanoids: roles in biology and immunopathology. Trends Mol Med 14:461–469

    Article  CAS  PubMed  Google Scholar 

  30. Hong S, Gronert K, Devchand PR, Moussignac RL, Serhan CN (2003) Novel docosatrienes and 17S-resolvins generated from docosahexaenoic acid in murine brain, human blood, and glial cells – Autacoids in anti-inflammation. J Biol Chem 278:14677–14687

    Article  CAS  PubMed  Google Scholar 

  31. Hong S, Lu Y, Yang R, Gotlinger KH, Petasis NA, Serhan CN (2007) Resolvin D1, protectin D1, and related docosahexaenoic acid-derived products: analysis via electrospray/low energy tandem mass spectrometry based on spectra and fragmentation mechanisms. J Am Soc Mass Spectrom 18:128–144

    Article  CAS  PubMed  Google Scholar 

  32. Hu C, Wang M, Han X (2017) Shotgun lipidomics in substantiating lipid peroxidation in redox biology: methods and applications. Redox Biol 12:946–955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hussain SP, Hofseth LJ, Harris CC (2003) Radical causes of cancer. Nat Rev Cancer 3:276–285

    Article  CAS  PubMed  Google Scholar 

  34. Ingold I, Berndt C, Schmitt S, Doll S, Poschmann G, Buday K, Roveri A, Peng X, Porto Freitas F, Seibt T, Mehr L, Aichler M, Walch A, Lamp D, Jastroch M, Miyamoto S, Wurst W, Ursini F, Arnér ESJ, Fradejas-Villar N, Schweizer U, Zischka H, Friedmann Angeli JP, Conrad M (2018) Selenium Utilization by GPX4 Is Required to Prevent Hydroperoxide-Induced Ferroptosis. Cell 172:409–422. e421

    Article  CAS  PubMed  Google Scholar 

  35. Ivanova PT, Milne SB, Myers DS, Brown HA (2009) Lipidomics: a mass spectrometry based systems level analysis of cellular lipids. Curr Opin Chem Biol 13:526–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jira W, Spiteller G, Schramm A (1996) Increase in hydroxy fatty acids in human low density lipoproteins with age. Chem Phys Lipids 84:165–173

    Article  CAS  PubMed  Google Scholar 

  37. Kagan VE, Mao G, Qu F, Angeli JPF, Doll S, Croix CS, Dar HH, Liu B, Tyurin VA, Ritov VB, Kapralov AA, Amoscato AA, Jiang J, Anthonymuthu T, Mohammadyani D, Yang Q, Proneth B, Klein-Seetharaman J, Watkins S, Bahar I, Greenberger J, Mallampalli RK, Stockwell BR, Tyurina YY, Conrad M, Bayır H (2017) Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem Biol 13:81–90

    Article  CAS  PubMed  Google Scholar 

  38. Kawai Y, Takeda S, Terao J (2006) Lipidomic analysis for lipid peroxidation-derived aldehydes using gas chromatography-mass spectrometry. Chem Res Toxicol 20:99–107

    Article  CAS  Google Scholar 

  39. Kerwin JL, Torvik JJ (1996) Identification of monohydroxy fatty acids by electrospray mass spectrometry and tandem mass spectrometry. Anal Biochem 237:56–64

    Article  CAS  PubMed  Google Scholar 

  40. Korovila I, Hugo M, Castro JP, Weber D, Höhn A, Grune T, Jung T (2017) Proteostasis, oxidative stress and aging. Redox Biol 13:550–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kuda O (2017) Bioactive metabolites of docosahexaenoic acid. Biochimie 136:12–20

    Article  CAS  PubMed  Google Scholar 

  42. Leonard AE, Pereira SL, Sprecher H, Huang Y (2004) Elongation of long-chain fatty acids. Prog Lipid Res 43:36–54

    Article  CAS  PubMed  Google Scholar 

  43. Liu M, Yokomizo, T (2015) The role of leukotrienes in allergic diseases. Allergol Int 64:17–26

    Article  CAS  PubMed  Google Scholar 

  44. Lu Y, Hong S, Tjonahen E, Serhan CN (2005) Mediator-lipidomics: databases and search algorithms for PUFA-derived mediators. J Lipid Res 46:790–802

    Article  CAS  PubMed  Google Scholar 

  45. Lyberg AM, Adlercreutz P (2006) Monitoring monohydroperoxides in docosahexaenoic acid using highperformance liquid chromatography. Lipids, 41:67–76

    Article  CAS  PubMed  Google Scholar 

  46. MacMillan DK, Murphy RC (1995) Analysis of lipid hydroperoxides and long-chain conjugated keto acids by negative ion electrospray mass spectrometry. J Am Soc Mass Spectrom 6:1190–1201

    Article  CAS  PubMed  Google Scholar 

  47. Masoodi M, Mir AA, Petasis NA, Serhan CN, Nicolaou A (2008) Simultaneous lipidomic analysis of three families of bioactive lipid mediators leukotrienes, resolvins, protectins and related hydroxy-fatty acids by liquid chromatography/electrospray ionisation tandem mass spectrometry. Rapid Commun Mass Spectrom 22:75–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Masoodi M, Nicolaou A (2006) Lipidomic analysis of twenty-seven prostanoids and isoprostanes by liquid chromatography/electrospray tandem mass spectrometry. Rapid Commun Mass Spectrom 20:3023–3029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Massey KA, Nicolaou A (2013) Lipidomics of oxidized polyunsaturated fatty acids. Free Radic Biol Med 59:45–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Miyamoto S, Martinez GR, Martins APB, Medeiros MHG, Di Mascio P (2003) Direct evidence of singlet molecular oxygen production in the reaction of linoleic acid hydroperoxide with peroxynitrite. J Am Chem Soc 125:4510–4517

    Article  CAS  PubMed  Google Scholar 

  51. Miyamoto S, Martinez GR, Medeiros MHG, Di Mascio P (2014) Singlet molecular oxygen generated by biological hydroperoxides. J Photochem Photobiol B Biol 139:24–33

    Article  CAS  Google Scholar 

  52. Miyamoto S, Ronsein GE, Prado FM, Uemi M, Correa TC, Toma IN, Bertolucci A, Oliveira MCB, Motta FD, Medeiros MHG, Di Mascio P (2007) Biological hydroperoxides and singlet molecular oxygen generation. IUBMB Life 59:322–331

    Article  CAS  PubMed  Google Scholar 

  53. Moore K, Roberts LJ (1998) Measurement of lipid peroxidation. Free Radic Res 28:659–671

    Article  CAS  PubMed  Google Scholar 

  54. Murphy RC, Barkley RM, Berry KZ, Hankin J, Harrison K, Johnson C, Krank J, McAnoy A, Uhlson C, Zarini S (2005) Electrospray ionization and tandem mass spectrometry of eicosanoids. Anal Biochem 346:1–42

    Article  CAS  PubMed  Google Scholar 

  55. Murphy RC, Fiedler J, Hevko J (2001) Analysis of nonvolatile lipids by mass spectrometry. Chem Rev 101:479–526

    Article  CAS  PubMed  Google Scholar 

  56. Nakamura T, Bratton DL, Murphy RC (1997) Analysis of epoxyeicosatrienoic and monohydroxyeicosatetraenoic acids esterified to phospholipids in human red blood cells by electrospray tandem mass spectrometry. J Mass Spectrom 32:888–896

    Article  CAS  PubMed  Google Scholar 

  57. Needleman P, Truk J, Jakschik BA, Morrison AR, Lefkowith JB (1986) Arachidonic acid metabolism. Annu Rev Biochem 55:69–102

    Article  CAS  PubMed  Google Scholar 

  58. Niki E (2009) Lipid peroxidation: physiological levels and dual biological effects. Free Radic Biol Med 47:469–484

    Article  CAS  PubMed  Google Scholar 

  59. Niki E (2014) Biomarkers of lipid peroxidation in clinical material. Biochim Biophys Acta Gen Subj 1840:809–817

    Article  CAS  Google Scholar 

  60. Niki E, Yoshida Y, Saito Y, Noguchi N (2005) Lipid peroxidation: mechanisms, inhibition, and biological effects. Biochem Biophys Res Commun 338:668–676

    Article  CAS  PubMed  Google Scholar 

  61. Nunez A, Foglia TA, Piazza GJ (2001) Characterization of lipoxygenase oxidation products by high-performance liquid chromatography with electron impact-mass spectrometric detection. Lipids 36:851–856

    Article  CAS  PubMed  Google Scholar 

  62. Oliw EH, Hornsten L, Sprecher H, Hamberg M (1993) Oxygenation of 5,8,11-eicosatrienoic acid by prostaglandin endoperoxide synthase and by cytochrome P450 monooxygenase: structure and mechanism of formation of major metabolites. Arch Biochem Biophys 305:288–297

    Article  CAS  PubMed  Google Scholar 

  63. Reverberi M, Punelli F, Scarpari M, Camera E, Zjalic S, Ricelli A, Fanelli C, Fabbri AA (2010) Lipoperoxidation affects ochratoxin A biosynthesis in Aspergillus ochraceus and its interaction with wheat seeds. Appl Microbiol Biotechnol 85:1935–1946

    Article  CAS  PubMed  Google Scholar 

  64. Rhee SG, Chae HZ, Kim K (2005) Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free Radic Biol Med 38:1543–1552

    Article  CAS  PubMed  Google Scholar 

  65. Ricciotti E, FitzGerald GA (2011) Prostaglandins and inflammation. Arterioscler Thromb Vasc Biol 31:986–1000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Roberts LJ, Morrow JD (2000) Measurement of F2-isoprostanes as an index of oxidative stress in vivo. Free Radic Biol Med 28:505–513

    Article  CAS  PubMed  Google Scholar 

  67. Salem N, Litman B, Kim H, Gawrisch K (2001) Mechanisms of action of docosahexaenoic acid in the nervous system. Lipids 36:945–959

    Article  CAS  PubMed  Google Scholar 

  68. Schneider C (2009) An update on products and mechanisms of lipid peroxidation. Mol Nutr Food Res 53:315–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Schneider C, Pratt DA, Porter NA, Brash AR (2007) Control of oxygenation in lipoxygenase and cyclooxygenase catalysis. Chem Biol 14:473–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Schneider C, Schreier P, Herderich M (1997) Analysis of lipoxygenase-derived fatty acid hydroperoxides by electrospray ionization tandem mass spectrometry. Lipids 32:331–336

    Article  CAS  PubMed  Google Scholar 

  71. Serhan CN (2014) Pro-resolving lipid mediators are leads for resolution physiology. Nature 510:92–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Serhan CN, Chiang N, Van DykeTE (2008) Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat Rev Immunol 8:349-361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Simopoulos AP (2002) The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed Pharmacother 56:365–379

    Article  CAS  PubMed  Google Scholar 

  74. Spickett CM, Pitt AR (2015) Oxidative lipidomics coming of age: advances in analysis of oxidized phospholipids in physiology and pathology. Antioxid Redox Signal 22:1646–1666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Spickett CM, Wiswedel I, Siems W, Zarkovic K, Zarkovic N (2010) Advances in methods for the determination of biologically relevant lipid peroxidation products. Free Radic Res 44:1172–1202

    Article  CAS  PubMed  Google Scholar 

  76. Spiteller G (1996) Enzymic lipid peroxidation-[alpha] consequence of cell injury? Free Radic Biol Med 21:1003–1009

    Article  CAS  PubMed  Google Scholar 

  77. Stocker R, Keaney JF Jr (2004) Role of oxidative modifications in atherosclerosis. Physiol Rev 84:1381–1478

    Article  CAS  PubMed  Google Scholar 

  78. Stratton SP, Liebler DC (1997) Determination of singlet oxygen-specific versus radical-mediated lipid peroxidation in photosensitized oxidation of lipid bilayers: effect of β-carotene and α-tocopherol. Biochemistry 36:12911–12920

    Article  CAS  PubMed  Google Scholar 

  79. Taguchi R, Houjou T, Nakanishi H, Yamazaki T, Ishida M, Imagawa M, Shimizu T (2005) Focused lipidomics by tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 823:26–36

    Article  CAS  PubMed  Google Scholar 

  80. Terao J, Matsushita S (1977) Products formed by photosensitized oxidation of unsaturated fatty-acid esters. J Am Oil Chem Soc 54:234–238

    Article  CAS  Google Scholar 

  81. Thomas DW, van Kuijk FJGM, Dratz EA, Stephens RJ (1991) Quantitative determination of hydroxy fatty acids as an indicator of in vivo lipid peroxidation: gas chromatography-mass spectrometry methods. Anal Biochem 198:104–111

    Article  CAS  PubMed  Google Scholar 

  82. Tyurin VA, Tyurina YY, Jung M, Tungekar MA, Wasserloos KJ, BayIr H, Greenberger JS, Kochanek PM, Shvedova AA, Pitt B, Kagan VE (2009) Mass-spectrometric analysis of hydroperoxy- and hydroxy-derivatives of cardiolipin and phosphatidylserine in cells and tissues induced by pro-apoptotic and pro-inflammatory stimuli. J Chromatogr B Analyt Technol Biomed Life Sci 877:2863–2872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wang Y, Armando AM, Quehenberger O, Yan C, Dennis EA (2014) Comprehensive ultra-performance liquid chromatographic separation and mass spectrometric analysis of eicosanoid metabolites in human samples. J Chromatogr A 1359:60–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wenk MR (2005) The emerging field of lipidomics. Nat Rev Drug Discov 4:594–610

    Article  CAS  PubMed  Google Scholar 

  85. Wilson R, Smith R, Wilson P, Shepherd MJ, Riemersma RA (1997) Quantitative gas chromatography-mass spectrometry isomer-specific measurement of hydroxy fatty acids in biological samples and food as a marker of lipid peroxidation. Anal Biochem 248:76–85

    Article  CAS  PubMed  Google Scholar 

  86. Wojtovich AP, Foster TH (2014) Optogenetic control of ROS production. Redox Biol 2:368–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Xu L, Davis TA, Porter NA (2009) Rate constants for peroxidation of polyunsaturated fatty acids and sterols in solution and in liposomes. J Am Chem Soc 131:13037–13044

    Article  CAS  PubMed  Google Scholar 

  88. Yamauchi R, Yamada T, Kato K, Ueno Y (1983) Monohydroperoxides formed by autoxidation and photosensitized oxidation of methyl eicosapentaenoate. Agric Biol Chem 47:2897–2902

    CAS  Google Scholar 

  89. Yang R, Chiang N, Oh SF, Serhan CN (2011) Metabolomics-lipidomics of eicosanoids and docosanoids generated by phagocytes. Curr Protoc Immunol Chapter 14, Unit 14.26

    Google Scholar 

  90. Yang Y, Cheng J, Singhal SS, Saini M, Pandya U, Awasthi S, Awasthi YC (2001) Role of glutathione S-transferases in protection against lipid peroxidation. Overexpression of hGSTA2-2 in K562 cells protects against hydrogen peroxide-induced apoptosis and inhibits JNK and Caspase 3 activation. J Biol Chem 276:19220–19230

    Article  CAS  PubMed  Google Scholar 

  91. Yin H, Xu L, Porter NA (2011) Free radical lipid peroxidation: mechanisms and analysis. Chem Rev 111:5944–5972

    Article  CAS  PubMed  Google Scholar 

  92. Yin HY, Brooks JD, Gao L, Porter NA, Morrow JD (2007) Identification of novel autoxidation products of the omega-3 fatty acid eicosapentaenoic acid in vitro and in vivo. J Biol Chem 282:29890–29901

    Article  CAS  PubMed  Google Scholar 

  93. Zhang X, Yang N, Ai D, Zhu Y (2015) Systematic metabolomic analysis of eicosanoids after omega-3 polyunsaturated fatty acid supplementation by a highly specific liquid chromatography–tandem mass spectrometry-based method. J Proteome Res 14:1843–1853

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Brazilian research funding institutions Fundação de Amparo à Pesquisa do Estado de São Paulo [FAPESP, CEPID-Redoxoma 13/07937-8 and 10/50891-0]; Conselho Nacional de Desenvolvimento Científico e Tecnológico [CNPq, Universal 424094/2016-9]; NAP-Redoxoma; Pro-Reitoria de Pesquisa USP; and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior [CAPES- Finance Code 001].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sayuri Miyamoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Derogis, P.B.M.C., Chaves-Fillho, A.B., Miyamoto, S. (2019). Characterization of Hydroxy and Hydroperoxy Polyunsaturated Fatty Acids by Mass Spectrometry. In: Trostchansky, A., Rubbo, H. (eds) Bioactive Lipids in Health and Disease. Advances in Experimental Medicine and Biology, vol 1127. Springer, Cham. https://doi.org/10.1007/978-3-030-11488-6_2

Download citation

Publish with us

Policies and ethics