Skip to main content

Normed Utility Functions: Some Recent Advances

  • Chapter
  • First Online:
New Perspectives in Multiple Criteria Decision Making

Part of the book series: Multiple Criteria Decision Making ((MCDM))

  • 840 Accesses

Abstract

In this chapter, we summarize some new results and trends in aggregation theory, thus contributing to the domain of normed utility functions. In particular, we discuss k-additive and k-maxitive aggregation functions and also present some construction methods. Penalty- and deviation-based approaches can be seen as implicitly given construction methods. For non-symmetric (weighted) aggregation functions, four symmetrization methods based on the optimization are introduced. All discussed results and construction methods are exemplified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Beliakov, G., Pradera, A., & Calvo, T. (2007). Aggregation functions: A guide for practitioners. Heidelberg, Berlin, New York: Springer.

    Google Scholar 

  • Beliakov, G., Bustince, H., & Calvo, T. (2016). A practical guide to averaging functions. Heidelberg, Berlin: Springer.

    Book  Google Scholar 

  • Burkard, R. E., Dell’Amico, M., & Martello, S. (2009). Assignment problems: Revised reprint. Philadelphia (PA): SIAM. http://dx.doi.org/10.1137/1.9781611972238.

  • Bustince, H., Beliakov, G., Dimuro, G. P., Bedregal, B., & Mesiar, R. (2017). On the definition of penalty functions in data aggregation. Fuzzy Sets and Systems, 323, 1–18. https://doi.org/10.1016/j.fss.2016.09.011.

  • Calvo, T., & Beliakov, G. (2010). Aggregation functions based on penalties. Fuzzy Sets and Systems, 161(10), 1420–1436.

    Article  Google Scholar 

  • Calvo, T., Kolesárová, A., Komorníková, M., & Mesiar, R. (2002). Aggregation operators: Properties, classes and construction methods. In: T. Calvo, G. Mayor, & R. Mesiar (Eds.), Aggregation operators. New trends and applications (pp. 3–107). Heidelberg: Physica-Verlag.

    Google Scholar 

  • Calvo, T., Mesiar, R., & Yager, R. R. (2004). Quantitative weights and aggregation. IEEE Transactions on Fuzzy Systems, 12(1), 62–69.

    Google Scholar 

  • Choquet, G. (1953). Theory of capacities. Annales de l’Institut Fourier, 5, 131–295.

    Article  Google Scholar 

  • Daróczy, Z. (1972). Über eine Klasse von Mittelwerten. Publicationes Mathematicae Debrecen, 19, 211–217.

    Google Scholar 

  • Decký, M., Mesiar, R., & Stupňanová, A. (2018). Deviation-based aggregation functions. Fuzzy Sets and Systems, 332, 29–36. https://doi.org/10.1016/j.fss.2017.03.016.

  • Durante, F., & Sempi, C. (2005). Semicopulae. Kybernetika, 41, 315–328.

    Google Scholar 

  • Grabisch, M. (1997). \(k\)-order additive discrete fuzzy measures and their representation. Fuzzy Sets and Systems, 92, 167–189.

    Article  Google Scholar 

  • Grabisch, M., Marichal, J. L., Mesiar, R., & Pap, E. (2009). Aggregation functions. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Greco, S., Ehrgott, M., & Figueira, J. R. (Eds.). (2010). Trends in multiple criteria decision analysis. Berlin: Springer.

    Google Scholar 

  • Greco, S., Figueira, J. R., & Ehrgott, M. (Eds.). (2005). Multiple criteria decision analysis. Heidelberg: Springer.

    Google Scholar 

  • Halaš, R., Mesiar, R., & Pócs, J. (2016). A new characterization of the discrete Sugeno integral. Information Fusion, 29, 84–86.

    Google Scholar 

  • Klement, E. P., Mesiar, R., & Pap, E. (2010). A universal integral as common frame for Choquet and Sugeno integral. IEEE Transactions on Fuzzy Systems, 18, 178–187.

    Article  Google Scholar 

  • Kolesárová, A., Li, J., & Mesiar, R. (2016). On \(k\)-additive aggregation functions. In: V. Torra, Y. Narukawa, G. Navarro-Arribas, & C. Yanez (Eds.), Modeling decisions for artificial intelligence. MDAI 2016. Lecture Notes in Computer Science (Vol. 9880, pp. 47–55). Springer.

    Google Scholar 

  • Kolesárová, A., Li, J., & Mesiar, R. (2016). \(k\)-additive aggregation functions and their characterization. European Journal of Operational Research (submitted).

    Google Scholar 

  • Losonczi, L. (1973). General inequalities of nonsymmetric means. Aequationes Mathematicae, 9, 221–235.

    Article  Google Scholar 

  • Lovász, L. (1983). Submodular function and convexity. In Mathematical programming: The state of the art (pp. 235–257). Berlin: Springer.

    Google Scholar 

  • Mesiar, R. (1997). \(k\)-order pan-additive discrete fuzzy measures. In 7th IFSA World Congress, June 1997, Prague, Czech Republic (pp. 488–490).

    Google Scholar 

  • Mesiar, R. (2003). k-order additivity and maxitivity. Atti del Seminario Matematico e Fisico dell’Universita di Modena, 23(51), 179–189.

    Google Scholar 

  • Mesiar, R., & Kolesárová, A. (2016). \(k\)-maxitive aggregation functions. Fuzzy Sets and Systems (submitted).

    Google Scholar 

  • Mesiar, R., Stupňanová, A., & Yager, R. R. (2018). Extremal symmetrization of aggregation functions. Annals of Operations Research, 269, 535–548. https://doi.org/10.1007/s10479-017-2471-x.

  • Owen, G. (1988). Multilinear extensions of games. In A. E. Roth (Ed.), The Shapley value. Essays in Honour of Lloyd S. Shapley (pp. 139–151). Cambridge University Press.

    Google Scholar 

  • Shilkret, N. (1971). Maxitive measure and integration. Indagationes Mathematicae, 33, 109–116.

    Article  Google Scholar 

  • Sugeno, M. (1974). Theory of fuzzy integrals and its applications. Ph.D. thesis, Tokyo Institute of Technology.

    Google Scholar 

  • Valášková, L. (2007). Non-additive measures and integrals. Ph.D. thesis, STU Bratislava.

    Google Scholar 

  • Yager, R. R. (1988). On ordered weighted averaging aggregation operators in multi-criteria decision making. IEEE Transactions on Systems, Man and Cybernetics, 18, 183–190.

    Article  Google Scholar 

  • Yager, R. R. (1993). Toward a general theory of information aggregation. Information Sciences, 68(3), 191–206.

    Article  Google Scholar 

  • Zadeh, L. A. (1978). Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems, 1, 3–28.

    Article  Google Scholar 

Download references

Acknowledgements

The authors kindly acknowledge the support of the project of Science and Technology Assistance Agency under the contract No. APVV–14–0013 and the support of VEGA projects 1/0682/16 and 1/0614/18. Moreover, the work of R. Mesiar on this paper was supported by the NPUII project LQ1602 and Ronald R. Yager was supported by the Office of Navel Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radko Mesiar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mesiar, R., Kolesárová, A., Stupňanová, A., Yager, R.R. (2019). Normed Utility Functions: Some Recent Advances. In: Doumpos, M., Figueira, J., Greco, S., Zopounidis, C. (eds) New Perspectives in Multiple Criteria Decision Making. Multiple Criteria Decision Making. Springer, Cham. https://doi.org/10.1007/978-3-030-11482-4_5

Download citation

Publish with us

Policies and ethics