Skip to main content

Adaptation of Rhodococcus to Organic Solvents

  • Chapter
  • First Online:

Part of the book series: Microbiology Monographs ((MICROMONO,volume 16))

Abstract

Most of the commercially interesting compounds and those affecting the environment are poor water soluble. Bacteria able to carry out the bioconversion or bioremediation of such compounds in systems using organic solvents as substrate and/or product reservoir are valuable. Strains of Rhodococcus have been reported to be particularly solvent tolerant whilst presenting a broad array of enzymes with potential for the production of industrially relevant compounds and/or for the metabolism of recalcitrant organic solvents. Under stressful conditions, these cells can adapt the cell wall and membrane compositions, as well as the physicochemical properties of the cell surface, can degrade or bioconvert toxic compounds such as benzene and toluene, and can aggregate and produce exopolymeric substances to protect the cell population. The adaptability and versatility of Rhodococcus cells can further broaden their application scope.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abbad-Andaloussi S, Lagnel C, Warzywoda M, Monot F (2003) Multi-criteria comparison of resting cell activities of bacterial strains selected for biodesulfurization of petroleum compounds. Enzym Microb Technol 32:446–454

    Article  CAS  Google Scholar 

  • Abe A, Inoue A, Usami R, Moriya K, Horikoshi K (1995) Properties of a newly isolated marine bacterium that can degrade polyaromatic hydrocarbons in the presence of organic solvents. J Mar Biotechnol 2:182–186

    CAS  Google Scholar 

  • Aislabie J, Saul DJ, Foght JM (2006) Bioremediation of hydrocarbon-contaminated polar soils. Extremophiles 10:171–179

    Article  CAS  PubMed  Google Scholar 

  • Al Akhrass F, Al Wohoush I, Chaftari A-M, Reitzel R, Jiang Y, Ghannoum M et al (2012) Rhodococcus bacteremia in cancer patients is mostly catheter related and associated with biofilm formation. PLoS One 7:e32945

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alvarez HM (2003) Relationship between beta-oxidation pathway and the hydrocarbon-degrading profile in actinomycetes bacteria. Int Biodeterior Biodegrad 52:35–42

    Article  CAS  Google Scholar 

  • Alvarez HM, Mayer F, Fabritius D, Steinbüchel A (1996) Formation of intracytoplasmic lipid inclusions by Rhodococcus opacus strain PD630. Arch Microbiol 165:377–386

    Article  CAS  PubMed  Google Scholar 

  • Bej AK, Saul D, Aislabie J (2000) Cold-tolerant alkane-degrading Rhodococcus species from Antarctica. Polar Biol 23:100–105

    Article  Google Scholar 

  • Bell K, Philp J, Aw D, Christofi N (1998) The genus Rhodococcus. J Appl Microbiol 85:195–210

    Article  CAS  PubMed  Google Scholar 

  • Benoit S, Benachour A, Taouji S, Auffray Y, Hartke A (2002) H2O2, which causes macrophage-related stress, triggers induction of expression of virulence-associated plasmid determinants in Rhodococcus equi. Infect Immun 70:3768–3776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Booth IR (2002) Stress and single cell: intrapopulation diversity is a mechanism to ensure survival upon exposure to stress. Int J Food Microbiol 78:19–30

    Article  PubMed  Google Scholar 

  • Bouchez-Naïtali M, Vandecasteele JP (2008) Biosurfactants, an help in the biodegradation of hexadecane? The case of Rhodococcus and Pseudomonas strains. World J Microbiol Biotechnol 24:1901–1907

    Article  Google Scholar 

  • Bouchez-Naïtali M, Blanchet D, Bardin V, Vandecasteele JP (2001) Evidence for interfacial uptake in hexadecane degradation by Rhodococcus equi: the importance of cell flocculation. Microbiology 147:2537–2543

    Article  Google Scholar 

  • Bouchez-Naïtali M, Abbad-Andaloussi S, Warzywoda M, Monot F (2004) Relation between bacterial strain resistance to solvents and biodesulfurization activity in organic medium. Appl Microbiol Biotechnol 65:440–445

    Article  PubMed  CAS  Google Scholar 

  • Brennan PJ, Nikaido H (1995) The envelope of mycobacteria. Annu Rev Biochem 64:29–63

    Article  CAS  PubMed  Google Scholar 

  • Brink LES, Tramper J (1985) Optimization of organic solvent in multiphase biocatalysis. Biotechnol Bioeng 27:1258–1269

    Article  CAS  PubMed  Google Scholar 

  • Cassells JM, Halling PJ (1990) Protease-catalyzed peptide-synthesis in aqueous-organic 2-phase systems: reactant precipitation and interfacial inactivation. Enzym Microb Technol 12:755759

    Article  Google Scholar 

  • Čejková A, Masak J, Jirku V, Vesely M, Patek M, Nesvera J (2005) Potential of Rhodococcus erythropolis as a bioremediation organism. World J Microbiol Biotechnol 21:317–321

    Article  CAS  Google Scholar 

  • Chapman JS (2003) Disinfectant resistance mechanisms, cross-resistance, and co-resistance. Int Biodeterior Biodegrad 51:271–276

    Article  CAS  Google Scholar 

  • Chen HL, Yao J, Wang L, Wang F, Bramanti E, Maskow T, Zaray G (2009) Evaluation of solvent tolerance of microorganisms by microcalorimetry. Chemosphere 74:1407–1411

    Article  CAS  PubMed  Google Scholar 

  • Cheremnykh KM, Luchnikova NA, Grishko VV, Ivshina IB (2018) Bioconversion of ecotoxic dehydroabietic acid using Rhodococcus actinobacteria. J Hazard Mater 346:103–112

    Article  CAS  PubMed  Google Scholar 

  • Colquhoun JA, Heald SC, Li L, Tamaoka J, Kato C, Horikoshi K, Bull AT (1998) Taxonomy and biotransformation activities of some deep-sea actinomycetes. Extremophiles 2:269–277

    Article  CAS  PubMed  Google Scholar 

  • Cronan JE Jr (2002) Phospholipid modifications in bacteria. Curr Opin Microbiol 5:202–205

    Article  CAS  PubMed  Google Scholar 

  • Dafoe JT, Daugulis AJ (2014) In situ product removal in fermentation systems: improved process performance and rational extractant selection. Biotechnol Lett 36:443–460

    Article  CAS  PubMed  Google Scholar 

  • Daugulis AJ (2001) Two-phase partitioning bioreactors: a new technology platform for destroying xenobiotics. Trends Biotechnol 19:457–462

    Article  CAS  PubMed  Google Scholar 

  • de Bont JAM (1998) Solvent-tolerant bacteria in biocatalysis. Tibtech 16:493–499

    Article  Google Scholar 

  • de Carvalho CCCR (2012) Adaptation of Rhodococcus erythropolis cells for growth and bioremediation under extreme conditions. Res Microbiol 163:125–136

    Article  PubMed  CAS  Google Scholar 

  • de Carvalho CCCR (2016) Whole cell biocatalysts: essential workers from Nature to the industry. Microb Biotechnol 10:250–263

    Article  PubMed  PubMed Central  Google Scholar 

  • de Carvalho CCCR, Caramujo MJ (2018) The various roles of fatty acids. Molecules 23:2583

    Article  PubMed Central  CAS  Google Scholar 

  • de Carvalho CCCR, da Fonseca MMR (2002a) Maintenance of cell viability in the biotransformation of (-)-carveol with whole cells of Rhodococcus erythropolis. J Mol Catal B Enzym 19:389–398

    Article  Google Scholar 

  • de Carvalho CCCR, da Fonseca MMR (2002b) Influence of reactor configuration on the production of carvone from carveol by whole cells of Rhodococcus erythropolis DCL14. J Mol Catal B Enzym 19:377–387

    Article  Google Scholar 

  • de Carvalho CCCR, da Fonseca MMR (2003) A simple method to observe organic solvent drops with a standard optical microscope. Microsc Res Tech 60:465–466

    Article  PubMed  Google Scholar 

  • de Carvalho CCCR, da Fonseca MMR (2004) Solvent toxicity in organic–aqueous systems analysed by multivariate analysis. Bioprocess Biosyst Eng 26:361–375

    Article  CAS  PubMed  Google Scholar 

  • de Carvalho CCCR, da Fonseca MMR (2005) The remarkable Rhodococcus erythropolis. Appl Microbiol Biotechnol 67:715–726

    Article  PubMed  CAS  Google Scholar 

  • de Carvalho CCCR, da Fonseca MMR (2007) Preventing biofilm formation: promoting cell separation with terpenes. FEMS Microbiol Ecol 61:406–413

    Article  PubMed  CAS  Google Scholar 

  • de Carvalho CCCR, van Keulen F, da Fonseca MMR (2000) Biotransformation of limonene-1,2-epoxide to limonene-1,2-diol by Rhodococcus erythropolis cells—an introductory approach to selective hydrolysis and product separation. Food Technol Biotechnol 38:181–185

    Google Scholar 

  • de Carvalho CCCR, Pons MN, da Fonseca MMR (2003) Principal components analysis as a tool to summarise biotransformation data: influence on cells of solvent type and phase ratio. Biocatal Biotransform 21:305–314

    Article  CAS  Google Scholar 

  • de Carvalho CCCR, da Cruz AARL, Pons MN, Pinheiro HMRV, Cabral JMS, da Fonseca MMR, Ferreira BS, Fernandes P (2004) Mycobacterium sp., Rhodococcus erythropolis, and Pseudomonas putida behavior in the presence of organic solvents. Microsc Res Tech 64:215–222

    Article  PubMed  Google Scholar 

  • de Carvalho CCCR, Parreno-Marchante B, Neumann G, da Fonseca MMR, Heipieper HJ (2005) Adaptation of Rhodococcus erythropolis DCL14 to growth on n-alkanes, alcohols and terpenes. Appl Microbiol Biotechnol 67:383–388

    Article  CAS  PubMed  Google Scholar 

  • de Carvalho CCCR, Fatal V, Alves SS, da Fonseca MMR (2007) Adaptation of Rhodococcus erythropolis cells to high concentrations of toluene. Appl Microbiol Biotechnol 76:1423–1430

    Article  CAS  PubMed  Google Scholar 

  • de Carvalho CCCR, Wick LY, Heipieper HJ (2009) Cell wall adaptations of planktonic and biofilm Rhodococcus erythropolis cells to growth on C5 to C16 n-alkane hydrocarbons. Appl Microbiol Biotechnol 82:311–320

    Article  CAS  PubMed  Google Scholar 

  • de Carvalho CCCR, Costa SS, Fernandes P, Couto I, Viveiros M (2014a) Membrane transport systems and the biodegradation potential and pathogenicity of genus Rhodococcus. Front Physiol 5:133

    PubMed  PubMed Central  Google Scholar 

  • de Carvalho CCCR, Marques MPC, Hachicho N, Heipieper HJ (2014b) Rapid adaptation of Rhodococcus erythropolis cells to salt stress by synthesizing polyunsaturated fatty acids. Appl Microbiol Biotechnol 98:5599–5606

    PubMed  Google Scholar 

  • de Carvalho CCCR, Fischer MA, Kirsten S, Würz B, Wick LY, Heipieper HJ (2016) Adaptive response of Rhodococcus opacus PWD4 to salt and phenolic stress on the level of mycolic acids. AMB Express 6:66

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deeb RA, Alvarez-Cohen L (1999) Temperature effects and substrate interactions during the aerobic biotransformation of BTEX mixtures by toluene-enriched consortia and Rhodococcus rhodochrous. Biotechnol Bioeng 62:526–536

    Article  CAS  PubMed  Google Scholar 

  • Derikvand P, Etemadifar Z, Biria D (2015) RSM optimization of dibenzothiophene biodesulfurization by newly isolated strain of Rhodococcus erythropolis PD1 in aqueous and biphasic systems. Microbiology 84:65–72

    Article  CAS  Google Scholar 

  • Diefenbach R, Heipieper HJ, Keweloh H (1992) The conversion of cis- into trans- unsaturated fatty acids in Pseudomonas putida P8: evidence for a role in the regulation of membrane fluidity. Appl Environ Microbiol 38:382–387

    CAS  Google Scholar 

  • Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eze MO (1991) Phase transitions in phospholipid bilayers: lateral phase separations play vital roles in biomembranes. Biochem Edu 19:204–208

    Article  CAS  Google Scholar 

  • Fang J, Lyon D, Wiesner M, Dong J, Alvarez PJJ (2007) Effect of a fullerene water suspension on bacterial phospholipids and membrane phase behavior. Environ Sci Technol 41:2636–2642

    Article  CAS  PubMed  Google Scholar 

  • Fanget NVJ, Foley S (2011) Starvation/stationary-phase survival of Rhodococcus erythropolis SQ1: a physiological and genetic analysis. Arch Microbiol 193:1–13

    Article  CAS  PubMed  Google Scholar 

  • Gilbert P, Brown MRW (1995) Some perspectives on preservation and disinfection in the present day. Int Biodeterior Biodegrad 36:219–226

    Article  Google Scholar 

  • Gressler LT, Vargas AC, Costa MM, Sutili FJ, Schwab M, Pereira DIB et al (2015) Biofilm formation by Rhodococcus equi and putative association with macrolide resistance. Pesqui Vet Bras 35:835–841

    Article  Google Scholar 

  • Gutierrez JA, Nichols P, Couperwhite I (1999) Changes in whole-cell derived fatty acids induced by benzene and occurrence of the unusual 16:1ω6c in Rhodococcus sp. 33. FEMS Microbiol Lett 176:213–218

    Article  Google Scholar 

  • Gutiérrez T, Learmonth RP, Nichols PD, Couperwhite I (2003) Comparative benzene-induced fatty acid changes in a Rhodococcus species and its benzene-sensitive mutant: possible role of myristic and oleic acids in tolerance. J Chem Ecol 29:2369–2378

    Article  PubMed  Google Scholar 

  • Gutiérrez T, Learmonth RP, Couperwhite I (2009) Analysis of benzene-induced effects on Rhodococcus sp. 33 reveals that constitutive processes play a major role in conferring tolerance. Sci World J 9:209–223

    Article  Google Scholar 

  • Hamada T, Sameshima Y, Honda K, Omasa T, Kato J, Ohtake H (2008) A comparison of various methods to predict bacterial predilection for organic solvents used as reaction media. J Biosci Bioeng 106:357–362

    Article  CAS  PubMed  Google Scholar 

  • Heipieper HJ, Keweloh H, Rehm HJ (1991) Influence of phenols on growth and membrane permeability of free and immobilized Escherichia coli. Appl Environ Microbiol 57:1213–1217

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heipieper HJ, Diefenbach R, Keweloh H (1992) Conversion of cis unsaturated fatty acids to trans, a possible mechanism for the protection of phenol-degrading Pseudomonas putida P8 from substrate toxicity. Appl Environ Microbiol 58:1847–1852

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heipieper HJ, Weber FJ, Sikkema J, Keweloh H, de Bont JAM (1994) Mechanisms behind resistance of whole cells to toxic organic solvents. Trends Biotechnol 12:409–415

    Article  CAS  Google Scholar 

  • Heipieper HJ, Meinhardt F, Segura A (2003) The cis-trans isomerase of unsaturated fatty acids in Pseudomonas and Vibrio: biochemistry, molecular biology and physiological function of a unique stress adaptive mechanism. FEMS Microbiol Lett 229:1–7

    Article  CAS  PubMed  Google Scholar 

  • Heipieper HJ, Neumann G, Cornelissen S, Meinhardt F (2007) Solvent-tolerant bacteria for biotransformations in two-phase fermentation systems. Appl Microbiol Biotechnol 74:961–973

    Article  CAS  PubMed  Google Scholar 

  • Inoue A (2011) Diversity and ecology of organic solvent tolerant microorganisms. In: Horikoshi K (ed) Extremophiles handbook. Springer Japan, Tokyo, pp 945–970

    Chapter  Google Scholar 

  • Inoue A, Horikoshi K (1989) A Pseudomonas thrives in high concentrations of toluene. Nature 338:264–266

    Article  CAS  Google Scholar 

  • Isken S, de Bont JAM (1998) Bacteria tolerant to organic solvents. Extremophiles 2:229–238

    Article  CAS  PubMed  Google Scholar 

  • Iwabuchi N, Sunairi M, Anzai H, Nakajima M, Harayama S (2000) Relationships between colony morphotypes and oil tolerance in Rhodococcus rhodochrous. Appl Environ Microbiol 66:5073–5077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwabuchi N, Sunairi M, Urai M, Itoh C, Anzai H, Nakajima M, Harayama S (2002) Extracellular polysaccharides of Rhodococcus rhodochrous S-2 stimulate the degradation of aromatic components in crude oil by indigenous marine bacteria. Appl Environ Microbiol 68:2337–2343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jucker BA, Harms H, Zehnder AJB (1996) Adhesion of the positively charged bacterium Stenotrophomonas (Xanthomonas) maltophilia 70401 to glass and ntarc. J Bacteriol 178:5472–5479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Junker F, Ramos J (1999) Involvement of the cis-trans isomerase Cti in the solvent resistance of Pseudomonas putida DOT-T1E. J Bacteriol 181:5693–5700

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kawaguchi H, Kobayashi H, Sato K (2012) Metabolic engineering of hydrophobic Rhodococcus opacus for biodesulfurization in oil-water biphasic reaction mixtures. J Biosci Bioeng 113:360–366

    Article  CAS  PubMed  Google Scholar 

  • Kilbane JJ (2017) Biodesulfurization: how to make it work? AJSE 42:1–9

    CAS  Google Scholar 

  • Kim J-S, Powalla M, Lang S, Wagner F, Lünsdorf H, Wray V (1990) Microbial glycolipid production under nitrogen limitation and resting cell conditions. J Biotechnol 13:257–266

    Article  CAS  PubMed  Google Scholar 

  • Kim IS, Foght JM, Gray RM (2002) Selective transport and accumulation of alkanes by Rhodococcus erythropolis S+14He. Biotechnol Bioeng 80:650–659

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi H, Takami H, Hirayama H, Kobata K, Usami R, Horikoshi K (1999) Outer membrane changes in a toluene-sensitive mutant of toluene-tolerant Pseudomonas putida IH-2000. J Bacteriol 181:4493–4998

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kolouchová I, Schreiberová O, Masák J, Sigler K, Řezanka T (2012) Structural analysis of mycolic acids from phenol-degrading strain of Rhodococcus erythropolis by liquid chromatography-tandem mass spectrometry. Folia Microbiol 57:473–483

    Article  CAS  Google Scholar 

  • Korobov VV, Zhurenko EI, Zharikova NV, Iasakov TR, Markusheva TV (2017) Possibility of using phenol- and 2,4-dichlorophenol-degrading strain, Rhodococcus erythropolis 17S, for treatment of industrial wastewater. Mosc Univ Biol Sci Bull 72:201–205

    Article  Google Scholar 

  • Korshunova IO, Pistsova ON, Kuyukina MS, Ivshina IB (2016) The effect of organic solvents on the viability and morphofunctional properties of Rhodococcus. Appl Biochem Microbiol 52:43–50

    Article  CAS  Google Scholar 

  • Kundu D, Hazra C, Dandi N, Chaudhari A (2013) Biodegradation of 4-nitrotoluene with biosurfactant production by Rhodococcus pyridinivorans NT2: metabolic pathway, cell surface properties and toxicological characterization. Biodegradation 24:775–793

    Article  CAS  PubMed  Google Scholar 

  • Kundu D, Hazra C, Chaudhari A (2015) Biodegradation of 2,4-dinitrotoluene with Rhodococcus pyridinivorans NT2: characteristics, kinetic modeling, physiological responses and metabolic pathway. RSC Adv 5:38818–38829

    Article  CAS  Google Scholar 

  • Kundu D, Hazra C, Chaudhari A (2016) Biodegradation of 2,6-dinitrotoluene and plant growth promoting traits by Rhodococcus pyridinivorans NT2: identification and toxicological analysis of metabolites and proteomic insights. Biocatal Agric Biotechnol 8:55–65

    Article  Google Scholar 

  • Kurosawa K, Laser J, Sinskey AJ (2015) Tolerance and adaptive evolution of triacylglycerol-producing Rhodococcus opacus to lignocellulose-derived inhibitors. Biotechnol Biofuels 8:76

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Laane C, Boeren S, Vos K (1985) On optimizing organic solvents in multi-liquid-phase biocatalysis. Trends Biotechnol 3:251–252

    Article  CAS  Google Scholar 

  • Laane C, Boeren S, Vos K, Veeger C (1987) Rules for optimization of biocatalysis in organic solvents. Biotechnol Bioeng 30:81–87

    Article  CAS  PubMed  Google Scholar 

  • Lambert PA (2002) Cellular impermeability and uptake of biocides and antibiotics in Gram-positive bacteria and mycobacteria. J Appl Microbiol 92:46S–54S

    Article  PubMed  Google Scholar 

  • Lang S, Philp JC (1998) Surface active lipids in rhodococci. Antonie Van Leeuwenhoek 74:59–70

    Article  CAS  PubMed  Google Scholar 

  • Larkin MJ, Kulakov LA, Allen CCR (2005) Biodegradation and Rhodococcus-masters of catabolic versatility. Curr Opin Biotechnol 16:282–290

    Article  CAS  PubMed  Google Scholar 

  • Larkin MJ, Kulakov LA, Allen CCR (2006) Biodegradation by members of the genus Rhodococcus: biochemistry, physiology, and genetic adaptation. Adv Appl Microbiol 59:1–29

    Article  CAS  PubMed  Google Scholar 

  • Leisinge T (1996) Biodegradation of chlorinated aliphatic compounds. Curr Opin Biotechnol 7:295–300

    Article  Google Scholar 

  • Leneva NA, Kolomytseva MP, Baskunov BP, Golovleva LA (2009) Phenanthrene and anthracene degradation by microorganisms of the genus Rhodococcus. Appl Biochem Microbiol 45:169–175

    Article  CAS  Google Scholar 

  • Li Y, Wang H, Hua F, Su M, Zhao Y (2014) Trans-membrane transport of fluoranthene by Rhodococcus sp. BAP-1 and optimization of uptake process. Bioresour Technol 155:213–219

    Article  CAS  PubMed  Google Scholar 

  • Lichtinger T, Reiss G, Benz R (2000) Biochemical identification and biophysical characterization of a channel-forming protein from Rhodococcus erythropolis. J Bacteriol 182:764–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu CW, Chang WN, Liu HS (2009) Bioremediation of n-alkanes and the formation of biofloccules by Rhodococcus erythropolis NTU-1 under various saline conditions and sea water. Biochem Eng J 45:69–75

    Article  CAS  Google Scholar 

  • Liu CW, Liang MS, Chen YC, Sayavedra-Soto LA, Liu HS (2012) Biodegradation of n-alkanes at high concentration and correlation to the accumulation of H+ ions in Rhodococcus erythropolis NTU-1. Biochem Eng J 63:124–128

    Article  CAS  Google Scholar 

  • Margesin R, Labbé D, Schinner F, Greer CW, Whyte LG (2003) Characterization of hydrocarbon-degrading microbial populations in contaminated and pristine alpine soils. Appl Environ Microbiol 69:3085–3092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Margesin R, Fonteyne PA, Redl B (2005) Low-temperature biodegradation of high amounts of phenol by Rhodococcus spp. and basidiomycetous yeasts. Res Microbiol 156:68–75

    Article  CAS  PubMed  Google Scholar 

  • Marqués AM, Pinazo A, Farfan M, Aranda FJ, Teruel JA, Ortiz A, Manresa A, Espuny MJ (2009) The physicochemical properties and chemical composition of trehalose lipids produced by Rhodococcus erythropolis 51T7. Chem Phys Lipids 158:110–117

    Article  PubMed  CAS  Google Scholar 

  • Martínková L, Uhnáková B, Pátek M, Nešvera J, Křen V (2009) Biodegradation potential of the genus Rhodococcus. Environ Int 35:162–177

    Article  PubMed  CAS  Google Scholar 

  • McDonnell G, Russell AD (1999) Antiseptics and disinfectants: activity, action, and resistance. Clin Microbiol Rev 12:147–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McLeod MP, Warren RL, Hsiao WWL, Araki N, Myhre M, Fernandes C et al (2006) The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse. Proc Natl Acad Sci 103:15582–15587

    Article  PubMed  PubMed Central  Google Scholar 

  • Melchior DL (1982) Lipid phase transitions and regulation of membrane fluidity in prokaryotes. Curr Top Membr Transp 17:263–307

    Article  CAS  Google Scholar 

  • Metz JG, Roessler P, Facciotti D, Levering C, Dittrich F, Lassner M et al (2001) Production of polyunsaturated fatty acids by polyketide synthases in both prokaryotes and eukaryotes. Science 293:290–293

    Article  CAS  PubMed  Google Scholar 

  • Monticello DJ (2000) Biodesulfurization and the upgrading of petroleum distillates. Curr Opin Biotechnol 11:540–546

    Article  CAS  PubMed  Google Scholar 

  • Møretrø T, Sharifzadeh S, Langsrud S, Heir E, Rickard AH (2015) Coaggregation between Rhodococcus and Acinetobacter strains isolated from the food industry. Can J Microbiol 61:503–512

    Article  PubMed  CAS  Google Scholar 

  • Mosqueda G, Ramos-Gonzalez M, Ramos J (1999) Toluene metabolism by solvent-tolerant Pseudomonas putida DOT-T1 strain and its role in solvent impermeabilization. Gene 232:69–76

    Article  CAS  PubMed  Google Scholar 

  • Na KS, Kuroda A, Takiguchi N, Ikeda T, Ohtake H, Kato J (2005) Isolation and characterization of benzene-tolerant Rhodococcus opacus strains. J Biosci Bioeng 99:378–382

    Article  CAS  PubMed  Google Scholar 

  • Nagasawa T, Shimizu H, Yamada H (1993) The superiority of the third-generation catalyst, Rhodococcus rhodochrous J1 nitrile hydratase, for industrial production of acrylamide. Appl Microbiol Biotechnol 40:189–195

    Article  CAS  Google Scholar 

  • Nielsen LE, Kadavy DR, Rajagopal S, Drijber R, Nickerson KW (2005) Survey of extreme solvent tolerance in gram-positive cocci: membrane fatty acid changes in Staphylococcus haemolyticus grown in toluene. Appl Environ Microbiol 71:5171–5176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohshiro T, Hirata T, Izumi Y (1995) Microbial desulfurization of dibenzothiophene in the presence of hydrocarbon. Appl Microbiol Biotechnol 44:249–252

    Article  CAS  Google Scholar 

  • Osborne SJ, Leaver J, Turner MK, Dunnill P (1990) Correlation of biocatalytic activity in an organic /aqueous two-liquid phase system with solvent concentration in the cell membrane. Enzyme Microb Technol 12:281–291

    Article  CAS  PubMed  Google Scholar 

  • Pacífico C, Fernandes P, de Carvalho CCCR (2018) Mycobacterial response to organic solvents and possible implications on cross-resistance with antimicrobial agents. Front Microbiol 9:961

    Article  PubMed  PubMed Central  Google Scholar 

  • Parales RE, Haddock JD (2004) Biocatalytic degradation of pollutants. Curr Opin Biotechnol 15:374–379

    Article  CAS  PubMed  Google Scholar 

  • Patel SB, Kilbane JJ, Webster DA (1997) Biodesulphurisation of dibenzothiophene in hydrophobic media by Rhodococcus sp. strain IGTS8. J Chem Technol Biotechnol 69:100–106

    Article  CAS  Google Scholar 

  • Pen Y, Zhang ZJ, Morales-García AL, Mears M, Tarmey DS, Edyvean RG et al (2015) Effect of extracellular polymeric substances on the mechanical properties of Rhodococcus. Biochim Biophys Acta 1848:518–526

    Article  CAS  PubMed  Google Scholar 

  • Piddock LJ (2006) Multidrug-resistance efflux pumps—not just for resistance. Nat Rev Microbiol 4:629–636

    Article  CAS  PubMed  Google Scholar 

  • Pini F, Grossi C, Nereo S, Michaud L, Giudice AL, Bruni V, Baldi F, Fani R (2007) Molecular and physiological characterization of psychrotrophic hydrocarbon-degrading bacteria isolated from Terra Nova Bay (Antarctica). Eur J Soil Biol 43:368–379

    Article  CAS  Google Scholar 

  • Poole K (2008) Bacterial multidrug efflux pumps serve other functions. Microbe 3:179–185

    Google Scholar 

  • Portevin D, de Sousa-D’Auria C, Houssin C, Grimaldi C, Chami M, Daffé M et al (2004) A polyketide synthase catalyzes the last condensation step of mycolic acid biosynthesis in mycobacteria and related organisms. Proc Natl Acad Sci USA 101:314–319

    Article  CAS  PubMed  Google Scholar 

  • Porto B, Maass D, Oliveira JV, de Oliveira D, Yamamoto CI, Ulson de Souza AA et al (2017) Heavy gas oil biodesulfurization by Rhodococcus erythropolis ATCC 4277: optimized culture medium composition and evaluation of low-cost alternative media. J Chem Technol Biotechnol 92:2376–2382

    Article  CAS  Google Scholar 

  • Pospíšilová D, Schreiberová O, Jirků V, Lederer T (2015) Effects of magnetic field on phenol biodegradation and cell physiochemical properties of Rhodococcus erythropolis. Biorem J 19:201–206

    Article  CAS  Google Scholar 

  • Prieto MB, Hidalgo A, Rodriguez-Fernandez C, Serra JL, Llama MJ (2002) Biodegradation of phenol in synthetic and industrial wastewater by Rhodococcus erythropolis UPV-1 immobilized in an air-stirred reactor with clarifier. Appl Microbiol Biotechnol 58:853–859

    Article  CAS  PubMed  Google Scholar 

  • Pucci OH, Bak MA, Peressutti SR, Klein I, Hartig C, Alvarez HM, Wunsche L (2000) Influence of crude oil contamination on the bacterial community of semiarid soils of Patagonia (Argentina). Acta Biotechnol 20:129–146

    Article  CAS  Google Scholar 

  • Ramos JL, Duque E, Gallegos MT, Godoy P, Ramos-Gonzalez MI, Rojas A, Teran W, Segura A (2002) Mechanisms of solvent tolerance in gram-negative bacteria. Annu Rev Microbiol 56:743–768

    Article  CAS  PubMed  Google Scholar 

  • Rapp P, Bock H, Wray V, Wagner F (1979) Formation, isolation and characterization of trehalose dimycolates from Rhodococcus erythropolis grown on n-alkanes. Microbiology 115:491–503

    CAS  Google Scholar 

  • Rehfuss M, Urban J (2005) Rhodococcus phenolicus sp nov., a novel bioprocessor isolated actinomycete with the ability to degrade chlorobenzene, dichlorobenzene and phenol as sole carbon sources. Syst Appl Microbiol 28:695–701

    Article  CAS  PubMed  Google Scholar 

  • Rieβ FG, Elflein M, Benk M, Schiffler B, Benz R, Garton N et al (2003) The cell wall of the pathogenic bacterium Rhodococcus equi contains two channel-forming proteins with different properties. J Bacteriol 185:2952–2960

    Article  PubMed Central  CAS  Google Scholar 

  • Rodgers RP, Blumer EN, Emmett MR, Marshall AG (2000) Efficacy of bacterial bioremediation: demonstration of complete incorporation of hydrocarbons into membrane phospholipids from Rhodococcus hydrocarbon degrading bacteria by electrospray ionization fourier transform ion cyclotron resonance mass spectrometry. Environ Sci Technol 34:535–540

    Article  CAS  Google Scholar 

  • Rodrigues CJC, de Carvalho CCCR (2015) Rhodococcus erythropolis cells adapt their fatty acid composition during biofilm formation on metallic and non-metallic surfaces. FEMS Microbiol Ecol 91:fiv135

    Article  PubMed  CAS  Google Scholar 

  • Rubashko GE, Kolomytseva MP, Golovleva LA (2006) Improvement of the process of ntarcti degradation by Rhodococcus rhodochrous strain 172. Appl Biochem Microbiol 42:396–398

    Article  CAS  Google Scholar 

  • Russell NJ (1988) Functions of lipids: structural roles and membrane functions. In: Ratledge C, Wilkinson SG (eds) Microbial lipids, vol 2. Academic Press, London, pp 279–365

    Google Scholar 

  • Russell AD (1995) Mechanisms of bacterial resistance to biocides. Int Biodeter Biodegrad 36:247–265

    Article  CAS  Google Scholar 

  • Saier MH (2000) A functional-phylogenetic classification system for transmembrane solute transporters. Microbiol Mol Biol Rev 64:354–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sameshima Y, Honda K, Kato J, Omasa T, Ohtake H (2008) Expression of Rhodococcus opacus alkB genes in anhydrous organic solvents. J Biosci Bioeng 106:199–203

    Article  CAS  PubMed  Google Scholar 

  • Sardessai Y, Bhosle S (2002) Tolerance of bacteria to organic solvents. Res Microbiol 153:263–268

    Article  CAS  PubMed  Google Scholar 

  • Sardessai YN, Bhosle S (2004) Industrial potential of organic solvent tolerant bacteria. Biotechnol Prog 20:655–660

    Article  CAS  PubMed  Google Scholar 

  • Segura A, Duque E, Mosqueda G, Ramos JL, Junker F (1999) Multiple responses of Gram-negative bacteria to organic solvents. Environ Microbiol 1:191–198

    Article  CAS  PubMed  Google Scholar 

  • Serrano-González MY, Chandra R, Castillo-Zacarias C, Robledo-Padilla F, Rostro-Alanis MJ, Parra-Saldivar R (2018) Biotransformation and degradation of 2,4,6-trinitrotoluene by microbial metabolism and their interaction. Def Technol 14:151–164

    Article  Google Scholar 

  • Sikkema J, Weber FJ, Heipieper HJ, de Bont JAM (1994) Cellular toxicity of lipophilic compounds: mechanisms, implications, and adaptations. Biocatalysis 10:113–122

    Article  CAS  Google Scholar 

  • Sikkema J, de Bont JAM, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59:201–222

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sinensky M (1974) Homeoviscous adaptation—a homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli. Proc Natl Acad Sci USA 71:522–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sokolovská I, Rozenberg R, Riez C, Rouxhet PG, Agathos SN, Wattiau P (2003) Carbon source-induced modifications in the mycolic acid content and cell wall permeability of Rhodococcus erythropolis E1. Appl Environ Microbiol 69:7019–7027

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Soleimani M, Bassi A, Margaritis A (2007) Biodesulfurization of refractory organic sulfur compounds in fossil fuels. Biotechnol Adv 25:570–596

    Article  CAS  PubMed  Google Scholar 

  • Solyanikova IP, Mulyukin AL, Suzina NE, El-Registan GI, Golovleva LA (2011) Improved xenobiotic-degrading activity of Rhodococcus opacus strain 1cp after dormancy. J Environ Sci Health B 46:638–647

    Article  CAS  PubMed  Google Scholar 

  • Sonnleitner B (1998) Dynamic adaptation of microbes. J Biotechnol 65:47–60

    Article  CAS  PubMed  Google Scholar 

  • Stachurski J, Michalek M (1996) The effect of the zeta potential on the stability of a non-polar oil-in-water emulsion. J Colloid Interface Sci 184:433–436

    Article  CAS  PubMed  Google Scholar 

  • Stancu MM (2014) Physiological cellular responses and adaptations of Rhodococcus erythropolis IBBPo1 to toxic organic solvents. J Environ Sci (China) 26:2065–2075

    Article  Google Scholar 

  • Stewart PS, Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358:135–138

    Article  CAS  PubMed  Google Scholar 

  • Thomassin-Lacroix EJM, Yu ZT, Eriksson M, Reimer KJ, Mohn WW (2001) DNA-based and culture-based characterization of a hydrocarbon-degrading consortium enriched from Arctic soil. Can J Microbiol 47:1107–1115

    Article  CAS  PubMed  Google Scholar 

  • Tischler D, Niescher S, Kaschabek SR, Schlömann M (2013) Trehalose phosphate synthases OtsA1 and OtsA2 of Rhodococcus opacus 1CP. FEMS Microbiol Lett 342:113–122

    Article  CAS  PubMed  Google Scholar 

  • Torres S, Pandey A, Castro GR (2011) Organic solvent adaptation of Gram positive bacteria: applications and biotechnological potentials. Biotechnol Adv 29:442–452

    Article  CAS  PubMed  Google Scholar 

  • Tsitko IV, Zaitsev GM, Lobanok AG, Salkinoja-Saloneni MS (1999) Effect of aromatic compounds on cellular fatty acid composition of Rhodococcus opacus. Appl Environ Microbiol 65:853–855

    CAS  PubMed  PubMed Central  Google Scholar 

  • Urai M, Yoshizaki H, Anzai H, Ogihara J, Iwabuchi N, Harayama S, Sunairi M, Nakajima M (2007) Structural analysis of an acidic, fatty acid ester-bonded extracellular polysaccharide produced by a ntarcti-assimilating marine bacterium, Rhodococcus erythropolis PR4. Carbohydr Res 342:933–942

    Article  CAS  PubMed  Google Scholar 

  • van der Geize R, Dijkhuizen L (2004) Harnessing the catabolic diversity of rhodococci for environmental and biotechnological applications. Curr Opin Microbiol 7:255–261

    Article  PubMed  CAS  Google Scholar 

  • van Oss CJ (1995) Hydrophobicity of biosurfaces—origin, quantitative determination and interaction energies. Colloids Surf B Biointerfaces 5:91–110

    Article  Google Scholar 

  • Vermuë M, Sikkema J, Verheul A, Bakker R, Tramper J (1993) Toxicity of homologous series of organic solvents for the gram-positive bacteria Arthrobacter and Nocardia sp. and the gram-negative bacteria Acinetobacter and Pseudomonas sp. Biotechnol Bioeng 42:747–758

    Article  PubMed  Google Scholar 

  • Vorbeck C, Lenke H, Fischer P, Spain JC, Knackmuss H-J (1998) Initial reductive reactions in aerobic microbial metabolism of 2,4,6-trinitrotoluene. Appl Environ Microbiol 64:246–252

    CAS  PubMed  PubMed Central  Google Scholar 

  • Voss I, Steinbüchel A (2001) High cell density cultivation of Rhodococcus opacus for lipid production at a pilot-plant scale. Appl Microbiol Biotechnol 55:547–555

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Qiao N, Sun FQ, Shao ZZ (2008) Isolation, gene detection and solvent tolerance of benzene, toluene and xylene degrading bacteria from nearshore surface water and Pacific Ocean sediment. Extremophiles 12:335–342

    Article  CAS  PubMed  Google Scholar 

  • Warhurst AM, Fewson CA (1994) Biotransformations catalyzed by the genus Rhodococcus. Crit Rev Biotechnol 14:29–73

    Article  CAS  PubMed  Google Scholar 

  • Weathers TS, Higgins CP, Sharp JO (2015) Enhanced biofilm production by a toluene-degrading Rhodococcus observed after exposure to perfluoroalkyl acids. Environ Sci Technol 49:5458–5466

    Article  CAS  PubMed  Google Scholar 

  • Weber FJ, de Bont JAM (1996) Adaptation mechanisms of microorganisms to the toxic effects of organic solvents on membranes. Biochim Biophys Acta 1286:225–245

    Article  CAS  PubMed  Google Scholar 

  • Weber FJ, Isken S, de Bont JAM (1994) Cis/trans isomerization of fatty acids as a defence mechanism of Pseudomonas putida strains to toxic concentrations of toluene. Microbiology 140:2013–2017

    Article  CAS  PubMed  Google Scholar 

  • Whyte LG, Slagman SJ, Pietrantonio F, Bourbonnière L, Koval SF, Lawrence JR, Inniss WE, Greer CW (1999) Physiological adaptations involved in alkane assimilation at low temperatures by Rhodococcus sp. strain Q15. Appl Environ Microbiol 65:2961–2968

    CAS  PubMed  PubMed Central  Google Scholar 

  • Whyte LG, Schultz A, van Beilen JB, Luz AP, Pellizari D, Labbé D, Greer CW (2002) Prevalence of alkane monooxygenase genes in arctic and antarctic hydrocarbon-contaminated and pristine soils. FEMS Microbiol Ecol 41:141–150

    CAS  PubMed  Google Scholar 

  • Withell ER (1942) The significance of variation in the shape of the time—survivor curves. J Hyg 42:124–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamashita S, Satoi M, Iwasa Y, Honda K, Sameshima Y, Omasa T, Kato J, Ohtake H (2007) Utilization of hydrophobic bacterium Rhodococcus opacus B-4 as whole-cell catalyst in anhydrous organic solvents. Appl Microbiol Biotechnol 74:761–767

    Article  CAS  PubMed  Google Scholar 

  • Yoneda A, Henson WR, Goldner NK, Park KJ, Forsberg KJ, Kim SJ et al (2016) Comparative transcriptomics elucidates adaptive phenol tolerance and utilization in lipid-accumulating Rhodococcus opacus PD630. Nucleic Acids Res 44:2240–2254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon JH, Cho YG, Kang SS, Kim SB, Lee ST, Park YH (2000) Rhodococcus koreensis sp. nov., a 2,4-dinitrophenol-degrading bacterium. Int J Syst Evol Microbiol 50:1193–1201

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Sun Z, Li Y, Peng X, Li W, Yan Y (2009) Biodegradation of p-nitrophenol by Rhodococcus sp. CN6 with high cell surface hydrophobicity. J Hazard Mater 163:723–728

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author acknowledges Fundação para a Ciência e a Tecnologia, I.P. (FCT), Portugal, for financial support under programme “FCT Investigator 2013” (IF/01203/2013/CP1163/CT0002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla C. C. R. de Carvalho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Carvalho, C.C.C.R. (2019). Adaptation of Rhodococcus to Organic Solvents. In: Alvarez, H. (eds) Biology of Rhodococcus. Microbiology Monographs, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-030-11461-9_5

Download citation

Publish with us

Policies and ethics