Skip to main content

Braess Paradox in Networks of Stochastic Microscopic Traffic Models

  • Conference paper
  • First Online:
Traffic and Granular Flow '17 (TGF 2017)

Included in the following conference series:

Abstract

The Braess Paradox describes a counterintuitive situation that can arise in traffic networks which are used by selfish drivers who want to minimize their own traveltimes. For specific combinations of demand and traveltime functions of the roads in such networks the addition of a new road, resulting in a per se faster origin–destination connection, can lead to higher traveltimes for all network users. As an important addition to previous research on the paradox which focused on deterministic macroscopic models of traffic in road networks, we study its occurrence employing a stochastic microscopic traffic model—the totally asymmetric exclusion process (TASEP). We find that the paradox also occurs in these more realistic traffic models and that, depending on the degree of stochasticity, it dominates large parts of the phase space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For periodic boundary conditions one of the L sites is chosen. For open boundary conditions the entrance-reservoir is included into the update procedure. Then one of the total L + 1 sites is chosen.

References

  1. Bittihn, S., Schadschneider, A.: Braess paradox in a network of totally asymmetric exclusion processes. Phys. Rev. E 94, 062312 (2016)

    Article  Google Scholar 

  2. Bittihn, S., Schadschneider, A.: Braess paradox in a network with stochastic dynamics and fixed strategies. Physica A Stat. Mech. Appl. 507, 133–152 (2018)

    Article  MathSciNet  Google Scholar 

  3. Blythe, R., Evans, M.: Nonequilibrium steady states of matrix product form: a solver’s guide. J. Phys. A 40, R333 (2007)

    Article  MathSciNet  Google Scholar 

  4. Braess, D.: Über ein Paradoxon aus der Verkehrsplanung. Unternehmensforschung 12, 258 (1968)

    MathSciNet  MATH  Google Scholar 

  5. Braess, D., Nagurney, A., Wakolbinger, T.: On a paradox of traffic planning. Transp. Sci. 39, 446 (2005). (English translation of Braess, D.: Über ein Paradoxon aus der Verkehrsplanung. Unternehmensforschung12, 258 (1968))

    Article  Google Scholar 

  6. Crociani, L., Lämmel, G.: Multidestination pedestrian flows in equilibrium: a cellular automaton-based approach. Comput. Aided Civ. Inf. Eng. 31(6), 432–448 (2016)

    Article  Google Scholar 

  7. Derrida, B., Evans, M., Hakim, V., Pasquier, V.: Exact solution of a 1d asymmetric exclusion model using a matrix formulation. J. Phys. A 26, 1493 (1993)

    Article  MathSciNet  Google Scholar 

  8. Kolata, G.: What if they closed 42d Street and nobody noticed? The New York Times (December 1990)

    Google Scholar 

  9. MacDonald, C.T., Gibbs, J.H., Pipkin, A.C.: Kinetics of biopolymerization on nucleic acid templates. Biopolymers 6(1), 1–25 (1968)

    Article  Google Scholar 

  10. Nagel, K., Schreckenberg, M.: A cellular automaton model for freeway traffic. J. Phys. I Fr. 2(12), 2221–2229 (1992)

    Article  Google Scholar 

  11. Nagurney, A.: The negation of the Braess paradox as demand increases: the wisdom of crowds in transportation networks. EPL 91, 48002 (2010)

    Article  Google Scholar 

  12. Pas, E., Principio, S.L.: Braess’ paradox: some new insights. Transp. Res. Part B Methodol. 31(3), 265–276 (1997)

    Article  Google Scholar 

  13. Penchina, C.M., Penchina, L.J.: The Braess paradox in mechanical, traffic, and other networks. Am. J. Phys. 71(5), 479 (2003)

    Article  Google Scholar 

  14. Schütz, G., Domany, E.: Phase transitions in an exactly solvable one-dimensional exclusion process. J. Stat. Phys. 72, 277 (1993)

    Article  Google Scholar 

  15. Steinberg, R., Zangwill, W.: The prevalence of Braess’ paradox. Transp. Sci. 17, 301 (1983)

    Article  Google Scholar 

  16. Thunig, T., Nagel, K.: Braess’s Paradox in an agent-based transport model. Proc. Comput. Sci. 83, 946–951 (2016)

    Article  Google Scholar 

  17. Wardrop, J.G.: Road paper. Some theoretical aspects of road traffic research. Proc. Inst. Civ. Eng. 1(3), 325–362 (1952)

    Google Scholar 

  18. Witthaut, D., Timme, M.: Braess’s paradox in oscillator networks, desynchronization and power outage. New J. Phys. 14(8), 083036 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

Financial support by the Deutsche Forschungsgesellschaft (DFG) under grant SCHA 636/8-2 and the Bonn-Cologne Graduate School of Physics and Astronomy (BCGS) is gratefully acknowledged. Monte Carlo simulations were carried out on the CHEOPS (Cologne High Efficiency Operating Platform for Science) cluster of the RRZK (University of Cologne).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Bittihn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bittihn, S., Schadschneider, A. (2019). Braess Paradox in Networks of Stochastic Microscopic Traffic Models. In: Hamdar, S. (eds) Traffic and Granular Flow '17. TGF 2017. Springer, Cham. https://doi.org/10.1007/978-3-030-11440-4_6

Download citation

Publish with us

Policies and ethics