Skip to main content

Exact Formula of Time-Headway Distribution for TASEP with Random-Sequential Update

  • Conference paper
  • First Online:
Traffic and Granular Flow '17 (TGF 2017)

Included in the following conference series:

Abstract

The analytical derivation of time-headway distribution for random-sequential totally asymmetric simple exclusion process (TASEP) with periodic boundaries is presented. The finite and periodic nature of the lattice together with the lattice-size-dependent hopping probability related to the random-sequential update does not allow to use common method for the derivation of the time-headway distribution. Another method is presented in this article. The exact derivation of the time-headway distribution leads to several interesting combinatorial tasks. Further, after proper time scaling and using the large L limit we obtain the approximation of the distribution, which can be considered as exact result for TASEP with continuous time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blythe, R., Evans, M.: Nonequilibrium steady states of matrix-product form: a solver’s guide. J. Phys. A Math. Theor. 40(46), R333–R441 (2007). https://doi.org/10.1088/1751-8113/40/46/R01

    Article  MathSciNet  Google Scholar 

  2. Chowdhury, D., Pasupathy, A., Sinha, S.: Distributions of time- and distance-headways in the Nagel-Schreckenberg model of vehicular traffic: effects of hindrances. Eur. Phys. J. B 5(3), 781–786 (1998). https://doi.org/10.1007/s100510050502

    Article  Google Scholar 

  3. Hrabák, P., Krbálek, M.: Time-headway distribution for periodic totally asymmetric exclusion process with various updates. Phys. Lett. A 380(9–10), 1003–1011 (2016). https://doi.org/10.1016/j.physleta.2016.01.013

    Article  MathSciNet  Google Scholar 

  4. Li, L., Chen, X.M.: Vehicle headway modeling and its inferences in macroscopic/microscopic traffic flow theory: a survey. Transp. Res. C Emerg. Technol. 76, 170–188 (2017). https://doi.org/10.1016/j.trc.2017.01.007

    Article  Google Scholar 

  5. Rajewsky, N., Santen, L., Schadschneider, A., Schreckenberg, M.: The asymmetric exclusion process: comparison of update procedures. J. Stat. Phys. 92(1–2), 151–194 (1998). https://doi.org/10.1023/A:1023047703307

    Article  MathSciNet  Google Scholar 

  6. Schadschneider, A., Chowdhury, D., Nishinari, K.: Stochastic Transport in Complex Systems: From Molecules to Vehicles. Elsevier Science B.V., Amsterdam (2010). https://doi.org/10.1016/B978-0-444-52853-7.00016-6

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Hrabák .

Editor information

Editors and Affiliations

Appendix

Appendix

Lemma 1

For n, m ≥ 1 and z ≥ 0 it holds

$$\displaystyle \begin{aligned} \begin{array}{rcl} C_{n,m,z}(j)&\displaystyle =&\displaystyle \textstyle{{j+n-1\choose j}\left[{z+n+m\choose m}-{j+n+m-1\choose m}\right]}+\\ &\displaystyle +&\displaystyle \textstyle{{j+m-1\choose j}\left[{z+n+m\choose n}-{j+n+m-1\choose n}\right]} \end{array} \end{aligned} $$
(11)

Proof

This combinatorial task leads to the expression

$$\displaystyle \begin{aligned} \begin{array}{rcl} C_{n,m,z}(j)&\displaystyle =&\displaystyle \textstyle{\sum_{d=0}^{z-j}\sum_{r_L=0}^{m-1}{z-j-d+r_L\choose r_m}\frac{(j+m+n-r_L-2)!}{k!(n-1)!(m-1-r_L)!}}\\ &\displaystyle +&\displaystyle \textstyle{\sum_{d=0}^{z-j}\sum_{r_F=0}^{n-1}{z-j-d+r_F\choose r_n}\frac{(j+m+n-r_F-2)!}{j!(m-1)!(n-1-r_F)!}}\,, {} \end{array} \end{aligned} $$
(12)

as can be seen from Fig. 6. This can be summed using combinatorial Lemmas 2 and 3 shown below.

Fig. 6
figure 6

To the derivation of C n,m,z(j), where s 0 = j, r 0 = z − j − d, r L + s L = m − 1, s F = n − 1. Exchanging F and L leads to the second sum of (12)

Lemma 2

For a, b, m ≥ 0 it holds

$$\displaystyle \begin{aligned} \sum_{k=0}^{m}{a+k\choose k}{b+m-k\choose m-k}={a+b+m+1\choose m}\,. \end{aligned} $$
(13)

Proof

$$\displaystyle \begin{aligned} \begin{array}{rcl} \sum_{m=0}^{+\infty}{\textstyle{a+b+m+1\choose m}}z^m=(1-z)^{-(a+1)-(b+1)}=\sum_{m=0}^{+\infty}\sum_{k=0}^{m}{\textstyle{a+k\choose k}{b+m-k\choose m-k}}z^m\,. \end{array} \end{aligned} $$
(14)

Lemma 3

For a > b ≥ 0 and m ≥ 0 it holds

$$\displaystyle \begin{aligned} \sum_{d=0}^{m}{a+d\choose b}={a+m+1\choose b+1}-{a\choose b+1}\,. \end{aligned} $$
(15)

Proof

The relation can be directly derived using

$$\displaystyle \begin{aligned} {a+d\choose b}={a+d+1\choose b+1}-{a+d\choose b+1}\,. \end{aligned} $$
(16)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hrabák, P. (2019). Exact Formula of Time-Headway Distribution for TASEP with Random-Sequential Update. In: Hamdar, S. (eds) Traffic and Granular Flow '17. TGF 2017. Springer, Cham. https://doi.org/10.1007/978-3-030-11440-4_1

Download citation

Publish with us

Policies and ethics