Skip to main content
  • 897 Accesses

Abstract

Lab-on-a-chip (LOC)-based immunoassays (IAs) are one of the most prospective IA formats for the point-of-care (POC) detection of analytes at the point-of-need as they are simple, cost-effective, and rapid. Although the conventional POC IA formats are lateral flow assay (LFA), dipstick, and electrochemical strips, the most recent LOC-based POC IA platforms incorporate microfluidic (MF) chips, paper, cellphone (CP), electrochemistry, lateral flow, and new biosensor concepts. There is an extensive need for such LOC-based POC IAs for the low-cost diagnosis of diseases in the developing countries and remote settings. They don’t require skilled analysts, expensive instruments, and costly infrastructure. The current trend is strongly inclined toward the use of smartphones (SPs) as the POC readers or smart readers. The next-generation LOC-based POC IAs would be fully-automated, low-cost, and simple to operate. They will employ novel IA concepts, strategies for prolonged reagent storage, innovative biosensors, and high-throughput multiplex detection. This chapter discussed the various LOC-based POC IAs along with the future trends and challenges toward the development of clinically-viable immunodiagnostics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Luppa PB, Müller C, Schlichtiger A, Schlebusch H. Point-of-care testing (POCT): current techniques and future perspectives. Trends Anal Chem. 2011;30(6):887–98.

    Article  Google Scholar 

  2. mHealth solutions market. http://www.marketsandmarkets.com/PressReleases/mhealth-apps-and-solutions.asp (2017).

  3. Point-of-care diagnostics market. http://www.marketsandmarkets.com/PressReleases/point-of-care-diagnostic.asp (2016).

  4. Vashist SK, Luppa PB, Yeo LY, Ozcan A, Luong JHT. Emerging technologies for next-generation point-of-care testing. Trends Biotechnol. 2015;33(11):692–705.

    Article  Google Scholar 

  5. Chin CD, Linder V, Sia SK. Commercialization of microfluidic point-of-care diagnostic devices. Lab Chip. 2012;12(12):2118–34.

    Article  Google Scholar 

  6. Turner AP. Biosensors: sense and sensibility. Chem Soc Rev. 2013;42(8):3184–96.

    Article  Google Scholar 

  7. Piccolo Xpress. http://www.abaxis.com/medical/piccolo-xpress (2017).

  8. Kai J, Puntambekar A, Santiago N, Lee SH, Sehy DW, Moore V, et al. A novel microfluidic microplate as the next generation assay platform for enzyme linked immunoassays (ELISA). Lab Chip. 2012;12(21):4257–62.

    Article  Google Scholar 

  9. Gyrolab CDs. https://www.gyrosproteintechnologies.com/gyrolab-cds-automated-immunoassays

  10. Gyrolab xPlore. http://www.gyros.com/products/systems/gyrolab-xplore/.

  11. Gorkin R, Park J, Siegrist J, Amasia M, Lee BS, Park JM, et al. Centrifugal microfluidics for biomedical applications. Lab Chip. 2010;10(14):1758–73.

    Article  Google Scholar 

  12. Czilwik G, Vashist SK, Klein V, Buderer A, Roth G, von Stetten F, et al. Magnetic chemiluminescent immunoassay for human C-reactive protein on the centrifugal microfluidics platform. RSC Adv. 2015;5(76):61906–12.

    Article  Google Scholar 

  13. Vashist SK, van Oordt T, Schneider EM, Zengerle R, von Stetten F, Luong JHT. A smartphone-based colorimetric reader for bioanalytical applications using the screen-based bottom illumination provided by gadgets. Biosens Bioelectron. 2015;67:248–55.

    Article  Google Scholar 

  14. Coskun AF, Nagi R, Sadeghi K, Phillips S, Ozcan A. Albumin testing in urine using a smart-phone. Lab Chip. 2013;13(21):4231–8.

    Article  Google Scholar 

  15. Wei Q, Nagi R, Sadeghi K, Feng S, Yan E, Ki SJ, et al. Detection and spatial mapping of mercury contamination in water samples using a smart-phone. ACS Nano. 2014;8(2):1121–9.

    Article  Google Scholar 

  16. Su K, Zou Q, Zhou J, Zou L, Li H, Wang T, et al. High-sensitive and high-efficient biochemical analysis method using a bionic electronic eye in combination with a smartphone-based colorimetric reader system. Sens Actuators B Chem. 2015;216:134–40.

    Article  Google Scholar 

  17. Petryayeva E, Algar WR. Multiplexed homogeneous assays of proteolytic activity using a smartphone and quantum dots. Anal Chem. 2014;86(6):3195–202.

    Article  Google Scholar 

  18. Yu H, Tan Y, Cunningham BT. Smartphone fluorescence spectroscopy. Anal Chem. 2014;86(17):8805–13.

    Article  Google Scholar 

  19. Long KD, Yu H, Cunningham BT. Smartphone instrument for portable enzyme-linked immunosorbent assays. Biomed Opt Exp. 2014;5(11):3792–806.

    Article  Google Scholar 

  20. Wang S, Zhao X, Khimji I, Akbas R, Qiu W, Edwards D, et al. Integration of cell phone imaging with microchip ELISA to detect ovarian cancer HE4 biomarker in urine at the point-of-care. Lab Chip. 2011;11(20):3411–8.

    Article  Google Scholar 

  21. Venkatesh AG, van Oordt T, Schneider EM, Zengerle R, von Stetten F, Luong JHT, et al. A smartphone-based colorimetric reader for human C-reactive protein immunoassay. Methods Mol Biol. 2017;1571:343–56.

    Article  Google Scholar 

  22. Coskun AF, Wong J, Khodadadi D, Nagi R, Tey A, Ozcan A. A personalized food allergen testing platform on a cellphone. Lab Chip. 2013;13(4):636–40.

    Article  Google Scholar 

  23. Lee S, Oncescu V, Mancuso M, Mehta S, Erickson D. A smartphone platform for the quantification of vitamin D levels. Lab Chip. 2014;14(8):1437–42.

    Article  Google Scholar 

  24. Oncescu V, Mancuso M, Erickson D. Cholesterol testing on a smartphone. Lab Chip. 2014;14(4):759–63.

    Article  Google Scholar 

  25. Roda A, Michelini E, Cevenini L, Calabria D, Calabretta MM, Simoni P. Integrating biochemiluminescence detection on smartphones: mobile chemistry platform for point-of-need analysis. Anal Chem. 2014;86(15):7299–304.

    Article  Google Scholar 

  26. Zangheri M, Cevenini L, Anfossi L, Baggiani C, Simoni P, Di Nardo F, et al. A simple and compact smartphone accessory for quantitative chemiluminescence-based lateral flow immunoassay for salivary cortisol detection. Biosens Bioelectron. 2015;64:63–8.

    Article  Google Scholar 

  27. Vashist SK, Mudanyali O, Schneider EM, Zengerle R, Ozcan A. Cellphone-based devices for bioanalytical sciences. Anal Bioanal Chem. 2014;406(14):3263–77.

    Article  Google Scholar 

  28. Ozcan A. Mobile phones democratize and cultivate next-generation imaging, diagnostics and measurement tools. Lab Chip. 2014;14(17):3187–94.

    Article  Google Scholar 

  29. Mudanyali O, Dimitrov S, Sikora U, Padmanabhan S, Navruz I, Ozcan A. Integrated rapid-diagnostic-test reader platform on a cellphone. Lab Chip. 2012;12(15):2678–86.

    Article  Google Scholar 

  30. Rapid assay reader. http://www.cellmic.com/content/rapid-test-readers/

  31. Liu W, Cassano CL, Xu X, Fan ZH. Laminated paper-based analytical devices (LPAD) with origami-enabled chemiluminescence immunoassay for cotinine detection in mouse serum. Anal Chem. 2013;85(21):10270–6.

    Article  Google Scholar 

  32. You DJ, Park TS, Yoon JY. Cell-phone-based measurement of TSH using Mie scatter optimized lateral flow assays. Biosens Bioelectron. 2013;40(1):180–5.

    Article  Google Scholar 

  33. Zhu H, Sikora U, Ozcan A. Quantum dot enabled detection of Escherichia coli using a cell-phone. Analyst. 2012;137(11):2541–4.

    Article  Google Scholar 

  34. Preechaburana P, Gonzalez MC, Suska A, Filippini D. Surface plasmon resonance chemical sensing on cell phones. Angew Chem Int Ed Engl. 2012;51(46):11585–8.

    Article  Google Scholar 

  35. Santhiago M, Wydallis JB, Kubota LT, Henry CS. Construction and electrochemical characterization of microelectrodes for improved sensitivity in paper-based analytical devices. Anal Chem. 2013;85(10):5233–9.

    Article  Google Scholar 

  36. Lillehoj PB, Huang MC, Truong N, Ho CM. Rapid electrochemical detection on a mobile phone. Lab Chip. 2013;13(15):2950–5.

    Article  Google Scholar 

  37. Dineva MA, Candotti D, Fletcher-Brown F, Allain JP, Lee H. Simultaneous visual detection of multiple viral amplicons by dipstick assay. J Clin Microbiol. 2005;43(8):4015–21.

    Article  Google Scholar 

  38. Mao X, Huang TJ. Microfluidic diagnostics for the developing world. Lab Chip. 2012;12(8):1412–6.

    Article  Google Scholar 

  39. Li X, Ballerini DR, Shen W. A perspective on paper-based microfluidics: current status and future trends. Biomicrofluidics. 2012;6(1):11301–1130113.

    Article  Google Scholar 

  40. Hu J, Wang S, Wang L, Li F, Pingguan-Murphy B, Lu TJ, et al. Advances in paper-based point-of-care diagnostics. Biosens Bioelectron. 2014;54:585–97.

    Article  Google Scholar 

  41. Pelton R. Bioactive paper provides a low-cost platform for diagnostics. Trends Anal Chem. 2009;28(8):925–42.

    Article  Google Scholar 

  42. Fernandez-Sanchez C, McNeil CJ, Rawson K, Nilsson O, Leung HY, Gnanapragasam V. One-step immunostrip test for the simultaneous detection of free and total prostate specific antigen in serum. J Immunol Methods. 2005;307(1–2):1–12.

    Article  Google Scholar 

  43. Ge C, Yu L, Fang Z, Zeng L. An enhanced strip biosensor for rapid and sensitive detection of histone methylation. Anal Chem. 2013;85(19):9343–9.

    Article  Google Scholar 

  44. Martinez AW, Phillips ST, Whitesides GM, Carrilho E. Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal Chem. 2009;82(1):3–10.

    Article  Google Scholar 

  45. Martinez AW, Phillips ST, Whitesides GM. Three-dimensional microfluidic devices fabricated in layered paper and tape. Proc Natl Acad Sci. 2008;105(50):19606–11.

    Article  Google Scholar 

  46. Yang Q, Gong X, Song T, Yang J, Zhu S, Li Y, et al. Quantum dot-based immunochromatography test strip for rapid, quantitative and sensitive detection of alpha fetoprotein. Biosens Bioelectron. 2011;30(1):145–50.

    Article  Google Scholar 

  47. van den Berk GE, Frissen PH, Regez RM, Rietra PJ. Evaluation of the rapid immunoassay determine HIV 1/2 for detection of antibodies to human immunodeficiency virus types 1 and 2. J Clin Microbiol. 2003;41(8):3868–9.

    Article  Google Scholar 

  48. Nilghaz A, Wicaksono DH, Gustiono D, Majid FAA, Supriyanto E, Kadir MRA. Flexible microfluidic cloth-based analytical devices using a low-cost wax patterning technique. Lab Chip. 2012;12(1):209–18.

    Article  Google Scholar 

  49. Lewis GG, DiTucci MJ, Baker MS, Phillips ST. High throughput method for prototyping three-dimensional, paper-based microfluidic devices. Lab Chip. 2012;12(15):2630–3.

    Article  Google Scholar 

  50. Schilling KM, Jauregui D, Martinez AW. Paper and toner three-dimensional fluidic devices: programming fluid flow to improve point-of-care diagnostics. Lab Chip. 2013;13(4):628–31.

    Article  Google Scholar 

  51. Cassano CL, Fan ZH. Laminated paper-based analytical devices (LPAD): fabrication, characterization, and assays. Microfluid Nanofluidics. 2013;15(2):173–81.

    Article  Google Scholar 

  52. Liu H, Crooks RM. Three-dimensional paper microfluidic devices assembled using the principles of origami. J Am Chem Soc. 2011;133(44):17564–6.

    Article  Google Scholar 

  53. Cheng CM, Martinez AW, Gong J, Mace CR, Phillips ST, Carrilho E, et al. Paper-based ELISA. Angew Chem Int Ed. 2010;49(28):4771–4.

    Article  Google Scholar 

  54. Apilux A, Ukita Y, Chikae M, Chailapakul O, Takamura Y. Development of automated paper-based devices for sequential multistep sandwich enzyme-linked immunosorbent assays using inkjet printing. Lab Chip. 2013;13(1):126–35.

    Article  Google Scholar 

  55. Nie Z, Deiss F, Liu X, Akbulut O, Whitesides GM. Integration of paper-based microfluidic devices with commercial electrochemical readers. Lab Chip. 2010;10(22):3163–9.

    Article  Google Scholar 

  56. Lu J, Ge S, Ge L, Yan M, Yu J. Electrochemical DNA sensor based on three-dimensional folding paper device for specific and sensitive point-of-care testing. Electrochim Acta. 2012;80:334–41.

    Article  Google Scholar 

  57. Parolo C, de la Escosura-Muniz A, Merkoci A. Enhanced lateral flow immunoassay using gold nanoparticles loaded with enzymes. Biosens Bioelectron. 2013;40(1):412–6.

    Article  Google Scholar 

  58. Hu J, Wang L, Li F, Han YL, Lin M, Lu TJ, et al. Oligonucleotide-linked gold nanoparticle aggregates for enhanced sensitivity in lateral flow assays. Lab Chip. 2013;13(22):4352–7.

    Article  Google Scholar 

  59. Choi DH, Lee SK, Oh YK, Bae BW, Lee SD, Kim S, et al. A dual gold nanoparticle conjugate-based lateral flow assay (LFA) method for the analysis of troponin I. Biosens Bioelectron. 2010;25(8):1999–2002.

    Article  Google Scholar 

  60. Qin Z, Chan WC, Boulware DR, Akkin T, Butler EK, Bischof JC. Significantly improved analytical sensitivity of lateral flow immunoassays by using thermal contrast. Angew Chem Int Ed. 2012;124(18):4434–7.

    Article  Google Scholar 

  61. Parolo C, Medina-Sanchez M, de la Escosura-Muniz A, Merkoci A. Simple paper architecture modifications lead to enhanced sensitivity in nanoparticle based lateral flow immunoassays. Lab Chip. 2013;13(3):386–90.

    Article  Google Scholar 

  62. Vella SJ, Beattie P, Cademartiri R, Laromaine A, Martinez AW, Phillips ST, et al. Measuring markers of liver function using a micropatterned paper device designed for blood from a fingerstick. Anal Chem. 2012;84(6):2883–91.

    Article  Google Scholar 

  63. Pollock NR, Rolland JP, Kumar S, Beattie PD, Jain S, Noubary F, et al. A paper-based multiplexed transaminase test for low-cost, point-of-care liver function testing. Sci Transl Med. 2012;4(152):152ra29.

    Article  Google Scholar 

  64. Yang X, Forouzan O, Brown TP, Shevkoplyas SS. Integrated separation of blood plasma from whole blood for microfluidic paper-based analytical devices. Lab Chip. 2012;12(2):274–80.

    Article  Google Scholar 

  65. MSD technology platform. https://www.mesoscale.com/~/media/files/brochures/techbrochure.pdf (2017).

  66. Beaudet L, Rodriguez-Suarez R, Venne M-H, Caron M, Bédard J, Brechler V, et al. AlphaLISA immunoassays: the no-wash alternative to ELISAs for research and drug discovery. Nat Methods. 2008;5(12):A10–1.

    Article  Google Scholar 

  67. Hawa G, Sonnleitner L, Missbichler A, Prinz A, Bauer G, Mauracher CJAB. Single step, direct fluorescence immunoassays based on metal enhanced fluorescence (MEF-FIA) applicable as micro plate-, array-, multiplexing-or point of care-format. Anal Biochem. 2018;549:39–44.

    Article  Google Scholar 

  68. Vashist SK, Czilwik G, Alagarswamy GV. Elisa system and related methods. WIPO Patent Pub No WO/2014/198836.

    Google Scholar 

  69. Vashist SK, Czilwik G, van Oordt T, von Stetten F, Zengerle R, Marion Schneider E, et al. One-step kinetics-based immunoassay for the highly sensitive detection of C-reactive protein in less than 30min. Anal Biochem. 2014;456:32–7.

    Article  Google Scholar 

  70. Vashist SK, Marion Schneider E, Zengerle R, von Stetten F, Luong JHT. Graphene-based rapid and highly-sensitive immunoassay for C-reactive protein using a smartphone-based colorimetric reader. Biosens Bioelectron. 2015;66(0):169–76.

    Article  Google Scholar 

  71. Vashist SK, Lam E, Hrapovic S, Male KB, Luong JHT. Immobilization of antibodies and enzymes on 3-aminopropyltriethoxysilane-functionalized bioanalytical platforms for biosensors and diagnostics. Chem Rev. 2014;114(21):11083–130.

    Article  Google Scholar 

  72. Jahanshahi-Anbuhi S, Pennings K, Leung V, Liu M, Carrasquilla C, Kannan B, et al. Pullulan encapsulation of labile biomolecules to give stable bioassay tablets. Angew Chem Int Ed. 2014;53(24):6155–8.

    Article  Google Scholar 

  73. Ramachandran S, Fu E, Lutz B, Yager P. Long-term dry storage of an enzyme-based reagent system for ELISA in point-of-care devices. Analyst. 2014;139(6):1456–62.

    Article  Google Scholar 

  74. Guidance for industry – Bioanalytical method validation. https://www.fda.gov/downloads/Drugs/Guidances/ucm070107.pdf (2001).

  75. Guideline on bioanalytical method validation. http://www.emaeuropa.eu/docs/en_GB/document_library/Scientific_guideline/2011/08/WC500109686.pdf (2011).

  76. Abe K, Kotera K, Suzuki K, Citterio D. Inkjet-printed paperfluidic immuno-chemical sensing device. Anal Bioanal Chem. 2010;398(2):885–93.

    Article  Google Scholar 

  77. Li CZ, Vandenberg K, Prabhulkar S, Zhu X, Schneper L, Methee K, et al. Paper based point-of-care testing disc for multiplex whole cell bacteria analysis. Biosens Bioelectron. 2011;26(11):4342–8.

    Article  Google Scholar 

  78. Vashist SK, Schneider EM, Luong JHT. Commercial smartphone-based devices and smart applications for personalized healthcare monitoring and management. Diagnostics. 2014;4(3):104–28.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vashist, S.K. (2019). Lab-on-a-Chip-Based Point-of-Care Immunoassays. In: Point-of-Care Technologies Enabling Next-Generation Healthcare Monitoring and Management. Springer, Cham. https://doi.org/10.1007/978-3-030-11416-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11416-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11415-2

  • Online ISBN: 978-3-030-11416-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics