Skip to main content

Prognostic Markers

  • Chapter
  • First Online:
  • 926 Accesses

Part of the book series: Hematologic Malignancies ((HEMATOLOGIC))

Abstract

CLL is a clinically and biologically heterogeneous disease. Various clinical risk scores have been derived including most recently the CLL-IPI. Besides, a myriad of molecular prognostic and predictive markers have been identified, but only the presence of either deletions of chromosome 17p and/or mutations in the TP53 gene is currently used in routine clinical practice to direct therapy and recommended by various national and international guidelines. Other candidate prognostic or predictive markers will be discussed. For example, a subgroup of patients with hypermutated immunoglobulin (IgHV) locus demonstrates very favourable prognosis or functional cure following chemo-immunotherapy in the frontline setting. Therefore, testing for the IgHV status should be considered prior to choosing first-line treatment. Conversely, patients presenting with complex karyotypic abnormalities have a poor prognosis even with the novel targeted agents and might be considered for experimental approaches or bone marrow transplantation. The possible consequence of the screening results on follow-up, therapy, and quality of life should be discussed with patient and relatives before requesting prognostic testing.

It is expected that the systematic use of massively parallel next-generation sequencing within clinical trials combined with rigorous standardisation of laboratory technologies will identify further biomarkers for risk stratification. However, to achieve statistically and clinically meaningful results, large number of patients will be required. Altogether, this holds the promise that a more individualised treatment approach on the basis of prognostic profiles will be possible.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Fischer K, et al. Long term remissions after FCR chemoimmunotherapy in previously untreated patients with CLL: updated results of the CLL8 trial. Blood. 2016;127(2):208–15.

    Article  CAS  PubMed  Google Scholar 

  2. Tam CS, et al. Long-term results of first salvage treatment in CLL patients treated initially with FCR (fludarabine, cyclophosphamide, rituximab). Blood. 2014;124:3059–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cramer P, Hallek M. Prognostic factors in chronic lymphocytic leukemia-what do we need to know? Nat Rev Clin Oncol. 2011;8:38–47.

    Article  CAS  PubMed  Google Scholar 

  4. Rai KR, et al. Clinical staging of chronic lymphocytic leukemia. Blood. 1975;46:219–35.

    CAS  PubMed  Google Scholar 

  5. Binet JL, Leporrier M, DIghiero G, Charron D, Vaugier G, Merle Beral H, Natali JC, Raphael M, Nizet B, Follezou JY. Clinical staging system for chronic lymphocytic leukemia. Cancer. 1977;40:855–64.

    Article  CAS  PubMed  Google Scholar 

  6. Binet JL, et al. A new prognostic classification of chronic lymphocytic leukemia derived from a multivariate survival analysis. Cancer. 1981;48:198–206.

    Article  CAS  PubMed  Google Scholar 

  7. Pflug N, et al. Development of a comprehensive prognostic index for patients with chronic lymphocytic leukemia. Blood. 2014;124:49–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wierda WG, et al. Prognostic nomogram and index for overall survival in previously untreated patients with chronic lymphocytic leukemia. Blood. 2007;109:4679–85.

    Article  CAS  PubMed  Google Scholar 

  9. Wierda WG, et al. Multivariable model for time to first treatment in patients with chronic lymphocytic leukemia. J Clin Oncol. 2011;29:4088–95.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Eichhorst B, Hallek M. Prognostication of chronic lymphocytic leukemia in the era of new agents. Hematology. 2016;2016:149–55.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Haferlach C, Dicker F, Weiss T, Schnittger S, Beck C, Grote-Metke A, Oruzio D, Kern W, Haferlach T. Toward a comprehensive prognostic scoring system in chronic lymphocytic leukemia based on a combination of genetic parameters. Genes Chromosomes Cancer. 2010;49(9):851–9. https://doi.org/10.1002/gcc.20794.

    Article  CAS  PubMed  Google Scholar 

  12. Rossi D, et al. CME Article Integrated mutational and cytogenetic analysis identifies new prognostic subgroups in chronic lymphocytic leukemia. Blood. 2013;121:1403–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. The International CLL-IPI Working Group. An international prognostic index for patients with chronic lymphocytic leukaemia (CLL-IPI): a meta-analysis of individual patient data. Lancet Oncol. 2016;17:779–90.

    Article  Google Scholar 

  14. Byrd JC, et al. Three-year follow-up of treatment-naïve and previously treated patients with CLL and SLL receiving single-agent ibrutinib. Blood. 2015;125:2497–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hamblin TJ, Davis Z, Gardiner A, Oscier DG, Stevenson FK. Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood. 1999;94:1848–54.

    CAS  PubMed  Google Scholar 

  16. Tobin G, et al. Somatically mutated Ig V(H)3-21 genes characterize a new subset of chronic lymphocytic leukemia. Blood. 2002;99:2262–4.

    Article  CAS  PubMed  Google Scholar 

  17. Thorsélius M, et al. Strikingly homologous immunoglobulin gene rearrangements and poor outcome in VH3-21-using chronic lymphocytic leukemia patients independent of geographic origin and mutational status. Blood. 2006;107:2889–94.

    Article  CAS  PubMed  Google Scholar 

  18. Landau DA, et al. Locally disordered methylation forms the basis of intratumor methylome variation in chronic lymphocytic leukemia. Cancer Cell. 2014;26:813–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ferreira PG, et al. Transcriptome characterization by RNA sequencing identifies a major molecular and clinical subdivision in chronic lymphocytic leukemia. Genome Res. 2014;24:212–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Oakes CC, et al. DNA methylation dynamics during B cell maturation underlie a continuum of disease phenotypes in chronic lymphocytic leukemia. Nat Genet. 2016;48:253–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Klinger M, et al. Next-generation IGHV sequencing CLL-like monoclonal B-cell lymphocytosis reveals frequent oligoclonality and ongoing hypermutation. Leukemia. 2015;30:1–28.

    Google Scholar 

  22. Kriangkum J, et al. Single-cell analysis and next-generation immuno-sequencing show that multiple clones persist in patients with chronic lymphocytic leukemia. PLoS One. 2015;10:1–15.

    Article  CAS  Google Scholar 

  23. Stamatopoulos B, et al. Targeted deep sequencing reveals clinically relevant subclonal IgHV rearrangements in chronic lymphocytic leukemia. Leukemia. 2017;31(4):837–45. https://doi.org/10.1038/leu.2016.307.

    Article  CAS  PubMed  Google Scholar 

  24. Di Giovanni S, Valentini G, Carducci P, Giallonardo P. Beta-2-microglobulin is a reliable tumor marker in chronic lymphocytic leukemia. Acta Haematol. 1989;81:181–5.

    Article  PubMed  Google Scholar 

  25. Wierda WG, et al. Characteristics associated with important clinical end points in patients with chronic lymphocytic leukemia at initial treatment. J Clin Oncol. 2009;27:1637–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Delgado J, et al. Beta2-microglobulin is a better predictor of treatment-free survival in patients with chronic lymphocytic leukaemia if adjusted according to glomerular filtration rate. Br J Haematol. 2009;145:801–5.

    Article  CAS  PubMed  Google Scholar 

  27. Keating MJ, et al. Early results of a chemoimmunotherapy regimen of fludarabine, cyclophosphamide, and rituximab as initial therapy for chronic lymphocytic leukemia. J Clin Oncol. 2005;23:4079–88.

    Article  CAS  PubMed  Google Scholar 

  28. Oscier D, et al. Prognostic factors identified three risk groups in the LRF CLL4 trial, independent of treatment allocation. Haematologica. 2010;95:1705–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hallek M, et al. Addition of rituximab to fludarabine and cyclophosphamide in patients with chronic lymphocytic leukaemia: a randomised, open-label, phase 3 trial. Lancet (London, England). 2010;376:1164–74.

    Article  CAS  Google Scholar 

  30. Pratt G, et al. Evaluation of serum markers in the LRF CLL4 trial: β2-microglobulin but not serum free light chains, is an independent marker of overall survival. Leuk Lymphoma. 2016;57(10):2342–50. https://doi.org/10.3109/10428194.2015.1137291.

    Article  CAS  PubMed  Google Scholar 

  31. Doehner H, et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med. 2000;343:1910–6.

    Article  Google Scholar 

  32. Van Dyke DL, et al. The Dohner fluorescence in situ hybridization prognostic classification of chronic lymphocytic leukaemia (CLL): the CLL Research Consortium experience. Br J Haematol. 2016;173:105–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Edelmann J, et al. High-resolution genomic profiling of chronic lymphocytic leukemia reveals new recurrent genomic alterations. Blood. 2012;120:4783–94.

    Article  CAS  PubMed  Google Scholar 

  34. Knight SJL, et al. Quantification of subclonal distributions of recurrent genomic aberrations in paired pre-treatment and relapse samples from patients with B-cell chronic lymphocytic leukemia. Leukemia. 2012;26:1564–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mertens D, et al. Chronic lymphocytic leukemia and 13q14: miRs and more. Leuk Lymphoma. 2009;50:502–5.

    Article  CAS  PubMed  Google Scholar 

  36. Ouillette P, et al. Integrated genomic profiling of chronic lymphocytic leukemia identifies subtypes of deletion 13q14. Cancer Res. 2008;68:1012–21.

    Article  CAS  PubMed  Google Scholar 

  37. Ouillette P, et al. Acquired genomic copy number aberrations and survival in chronic lymphocytic leukemia. Blood. 2011;118:3051–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Klein U, et al. The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell. 2010;17:28–40.

    Article  CAS  PubMed  Google Scholar 

  39. Cimmino A, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA. 2005;102:13944–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hernández JÁ, et al. A low frequency of losses in 11q chromosome is associated with better outcome and lower rate of genomic mutations in patients with chronic lymphocytic leukemia. PLoS One. 2015;10:e0143073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Neilson JR, et al. Deletions at 11q identify a subset of patients with typical CLL who show consistent disease progression and reduced survival. Leukemia. 1997;11:1929–32.

    Article  CAS  PubMed  Google Scholar 

  42. Doneda L, et al. Interphase fluorescence in situ hybridization analysis of del(11)(q23) and del(17)(p13) in chronic lymphocytic leukemia. Cancer Genet Cytogenet. 2003;140:31–6.

    Article  CAS  PubMed  Google Scholar 

  43. Fischer K, et al. Bendamustine in combination with rituximab for previously untreated patients with chronic lymphocytic leukemia: a multicenter phase II trial of the German chronic lymphocytic Leukemia Study Group. J Clin Oncol. 2012;30:3209–16.

    Article  CAS  PubMed  Google Scholar 

  44. Fischer K, et al. Bendamustine combined with rituximab in patients with relapsed and/or refractory chronic lymphocytic leukemia: a multicenter phase II trial of the German Chronic Lymphocytic Leukemia Study Group. J Clin Oncol. 2011;29:3559–66.

    Article  CAS  PubMed  Google Scholar 

  45. Hallek M, et al. Addition of rituximab to fludarabine and cyclophosphamide in patients with chronic lymphocytic leukaemia: a randomised, open-label, phase 3 trial. Lancet. 2010;376:1164–74.

    Article  CAS  PubMed  Google Scholar 

  46. Stankovic T, et al. ATM mutations and phenotypes in ataxia-telangiectasia families in the British Isles: expression of mutant ATM and the risk of leukemia, lymphoma, and breast cancer. Am J Hum Genet. 1998;62:334–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Choi M, Kipps T, Kurzrock R. ATM mutations in cancer: therapeutic implications. Mol Cancer Ther. 2016;15:1781–91.

    Article  CAS  PubMed  Google Scholar 

  48. Skowronska A, et al. Biallelic ATM inactivation significantly reduces survival in patients treated on the United Kingdom leukemia research fund chronic lymphocytic leukemia 4 trial. J Clin Oncol. 2012;30:4524–32.

    Article  CAS  PubMed  Google Scholar 

  49. Stankovic T, et al. Inactivation of ataxia telangiectasia mutated gene in B-cell chronic lymphocytic leukaemia. Lancet (London, England). 1999;353:26–9.

    Article  CAS  Google Scholar 

  50. Austen B, et al. Mutation status of the residual ATM allele is an important determinant of the cellular response to chemotherapy and survival in patients with chronic lymphocytic leukemia containing an 11q deletion. J Clin Oncol. 2007;25:5448–57.

    Article  CAS  PubMed  Google Scholar 

  51. Balatti V, et al. NOTCH1 mutations in CLL associated with trisomy 12. Blood. 2012;119:329–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Balatti V, et al. Trisomy 12 CLLs progress through NOTCH1 mutations. Leukemia. 2013;27:740–3.

    Article  CAS  PubMed  Google Scholar 

  53. Del Giudice I, et al. NOTCH1 mutations in +12 chronic lymphocytic leukemia (CLL) confer an unfavorable prognosis, induce a distinctive transcriptional profiling and refine the intermediate prognosis of +12 CLL. Haematologica. 2012;97:437–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chigrinova E, et al. Two main genetic pathways lead to the transformation of chronic lymphocytic leukemia to Richter syndrome. Blood. 2013;122:2673–82.

    Article  CAS  PubMed  Google Scholar 

  55. Zenz T, et al. Monoallelic TP53 inactivation is associated with poor prognosis in chronic lymphocytic leukemia: results from a detailed genetic characterization with long-term follow-up. Blood. 2008;112:3322–9.

    Article  CAS  PubMed  Google Scholar 

  56. Malcikova J, et al. Monoallelic and biallelic inactivation of TP53 gene in chronic lymphocytic leukemia: selection, impact on survival, and response to DNA damage. Blood. 2009;114:5307–14.

    Article  CAS  PubMed  Google Scholar 

  57. Guièze R, et al. Presence of multiple recurrent mutations confers poor trial outcome of relapsed/refractory CLL. Blood. 2015;126:2110–7.

    Article  CAS  PubMed  Google Scholar 

  58. Zenz T, et al. TP53 mutation and survival in chronic lymphocytic leukemia. J Clin Oncol. 2010;28:4473–9.

    Article  PubMed  Google Scholar 

  59. Gonzalez D, et al. Mutational status of the TP53 gene as a predictor of response and survival in patients with chronic lymphocytic leukemia: results from the LRF CLL4 trial. J Clin Oncol. 2011;29:2223–9.

    Article  PubMed  Google Scholar 

  60. Byrd JC, et al. Select high-risk genetic features predict earlier progression following chemoimmunotherapy with fludarabine and rituximab in chronic lymphocytic leukemia: justification for risk-adapted therapy. J Clin Oncol. 2006;24:437–43.

    Article  CAS  PubMed  Google Scholar 

  61. Bosch F, et al. Fludarabine, cyclophosphamide, and mitoxantrone as initial therapy of chronic lymphocytic leukemia: high response rate and disease eradication. Clin Cancer Res. 2008;14:155–61.

    Article  CAS  PubMed  Google Scholar 

  62. Bosch F, et al. Rituximab, fludarabine, cyclophosphamide, and mitoxantrone: a new, highly active chemoimmunotherapy regimen for chronic lymphocytic leukemia. J Clin Oncol. 2009;27:4578–84.

    Article  CAS  PubMed  Google Scholar 

  63. Rossi D, et al. Clinical impact of small TP53 mutated subclones in chronic lymphocytic leukemia. Blood. 2014;123:2139–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Malcikova J, et al. Detailed analysis of therapy-driven clonal evolution of TP53 mutations in chronic lymphocytic leukemia. Leukemia. 2015;29:877–85.

    Article  CAS  PubMed  Google Scholar 

  65. Landau DA, et al. Mutations driving CLL and their evolution in progression and relapse. Nature. 2015;526:525–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Puente XS, et al. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature. 2011;475:101–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wang L, et al. SF3B1 and other novel cancer genes in chronic lymphocytic leukemia. N Engl J Med. 2011;365:2497–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Puente XS, et al. Non-coding recurrent mutations in chronic lymphocytic leukaemia. Nature. 2015;526:519–24.

    Article  CAS  PubMed  Google Scholar 

  69. Schuh A, et al. Monitoring chronic lymphocytic leukemia progression by whole genome sequencing reveals heterogeneous clonal evolution patterns. Blood. 2012;120:4191–6.

    Article  CAS  PubMed  Google Scholar 

  70. Landau DA, et al. Evolution and impact of subclonal mutations in chronic lymphocytic leukemia. Cell. 2013;152:714–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Quesada V, et al. Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia. Nat Genet. 2012;44:47–52.

    Article  CAS  Google Scholar 

  72. Fabbri G, et al. Analysis of the chronic lymphocytic leukemia coding genome: role of NOTCH1 mutational activation. J Exp Med. 2011;208:1389–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bigas A, Espinosa L. Review article Hematopoietic stem cells: to be or Notch to be. Blood. 2012;119:3226–35.

    Article  CAS  PubMed  Google Scholar 

  74. Di Ianni M, et al. A new genetic lesion in B-CLL: a NOTCH1 PEST domain mutation. Br J Haematol. 2009;146:689–91.

    Article  CAS  PubMed  Google Scholar 

  75. Rossi D, et al. Mutations of NOTCH1 are an independent predictor of survival in chronic lymphocytic leukemia. Blood. 2011;119:521–9.

    Article  CAS  PubMed  Google Scholar 

  76. Sportoletti P, et al. NOTCH1 PEST domain mutation is an adverse prognostic factor in B-CLL. Br J Haematol. 2010;151:404–6.

    Article  PubMed  Google Scholar 

  77. Rosati E, et al. Constitutively activated Notch signaling is involved in survival and apoptosis resistance of B-CLL cells. Blood. 2009;113:856–65.

    Article  CAS  PubMed  Google Scholar 

  78. Stilgenbauer S, et al. Gene mutations and treatment outcome in chronic lymphocytic leukemia: results from the CLL8 trial. Blood. 2014;123:3247–54.

    Article  CAS  PubMed  Google Scholar 

  79. Pozzo F, et al. NOTCH1 mutations associate with low CD20 level in chronic lymphocytic leukemia: evidence for a NOTCH1 mutation-driven epigenetic dysregulation. Leukemia. 2015;30:1–8. https://doi.org/10.1038/leu.2015.182.

    Article  CAS  Google Scholar 

  80. Villamor N, et al. NOTCH1 mutations identify a genetic subgroup of chronic lymphocytic leukemia patients with high risk of transformation and poor outcome. Leukemia. 2013;27:1100–6.

    Article  CAS  PubMed  Google Scholar 

  81. Jeromin S, et al. SF3B1 mutations correlated to cytogenetics and mutations in NOTCH1, FBXW7, MYD88, XPO1 and TP53 in 1160 untreated CLL patients. Leukemia. 2014;28:108–17.

    Article  CAS  PubMed  Google Scholar 

  82. Messina M, et al. Genetic lesions associated with chronic lymphocytic leukemia chemo-refractoriness. Blood. 2014;123:2378–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Rossi D, et al. Mutations of the SF3B1 splicing factor in chronic lymphocytic leukemia: association with progression and fludarabine-refractoriness. Blood. 2011;118:6904–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Baliakas P, et al. Recurrent mutations refine prognosis in chronic lymphocytic leukemia. Leukemia. 2014;29(2):329–36. https://doi.org/10.1038/leu.2014.196.

    Article  CAS  PubMed  Google Scholar 

  85. Cortese D, et al. On the way towards a ‘CLL prognostic index’: focus on TP53, BIRC3, SF3B1, NOTCH1 and MYD88 in a population-based cohort. Leukemia. 2014;28:710–3.

    Article  CAS  PubMed  Google Scholar 

  86. Rossi D, et al. Biological and clinical risk factors of chronic lymphocytic leukaemia transformation to Richter syndrome. Br J Haematol. 2008;142:202–15.

    Article  CAS  PubMed  Google Scholar 

  87. Rossi D, et al. The genetics of Richter syndrome reveals disease heterogeneity and predicts survival after transformation. Blood. 2011;117:3391–401.

    Article  CAS  PubMed  Google Scholar 

  88. Eyre TA, et al. NCRI phase II study of CHOP in combination with ofatumumab in induction and maintenance in newly diagnosed Richter syndrome. Br J Haematol. 2016;175:43–54.

    Article  CAS  PubMed  Google Scholar 

  89. Byrd JC, et al. Ibrutinib versus ofatumumab in previously treated chronic lymphoid leukemia. N Engl J Med. 2014;371:213–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Byrd JC, et al. Acalabrutinib (ACP-196) in relapsed chronic lymphocytic leukemia. N Engl J Med. 2015;374:323–32. https://doi.org/10.1056/NEJMoa1509981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Furman RR, et al. Idelalisib and rituximab in relapsed chronic lymphocytic leukemia. N Engl J Med. 2014;370:997–1007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Roberts AW, et al. Targeting BCL2 with venetoclax in relapsed chronic lymphocytic leukemia. N Engl J Med. 2016;374(4):311–22. https://doi.org/10.1056/NEJMoa1513257.

    Article  CAS  PubMed  Google Scholar 

  93. Thompson PA, et al. Complex karyotype is a stronger predictor than del(17p) for an inferior outcome in relapsed or refractory chronic lymphocytic leukemia patients treated with ibrutinib-based regimens. Cancer. 2016;121:3612–21.

    Article  CAS  Google Scholar 

  94. Maddocks KJ, et al. Etiology of ibrutinib therapy discontinuation and outcomes in patients with chronic lymphocytic leukemia. JAMA Oncol. 2015;1:80–7.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Blombery P, et al. Acquisition of the recurrent Gly101Val mutation in BCL2 confers resistance to venetoclax in patients with progressive chronic lymphocytic leukemia. Cancer Discov. https://doi.org/10.1158/2159-8290.CD-18-1119.

  96. Quesada V, et al. Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia. Nat Genet. 2011;44:47–52.

    Article  CAS  PubMed  Google Scholar 

  97. Kasar S, et al. Whole-genome sequencing reveals activation-induced cytidine deaminase signatures during indolent chronic lymphocytic leukaemia evolution. Nat Commun. 2015;6:8866.

    Article  CAS  PubMed  Google Scholar 

  98. Larrayoz M, et al. Non-coding NOTCH1 mutations in chronic lymphocytic leukemia; their clinical impact in the UK CLL4 trial. Leukemia. 2017;31(2):510–4. https://doi.org/10.1038/leu.2016.298.

    Article  CAS  PubMed  Google Scholar 

  99. Alexandrov LB, et al. Signatures of mutational processes in human cancer. Nature. 2013;500:415–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Parikh SA, Strati P, Tsang M, West CP, Shanafelt TD. Should IGHV status and FISH testing be performed in all CLL patients at diagnosis? A systematic review and meta-analysis. Blood. 2016;127:1752–60. https://doi.org/10.1182/blood-2015-10-620864.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Schuh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schuh, A. (2019). Prognostic Markers. In: Hallek, M., Eichhorst, B., Catovsky, D. (eds) Chronic Lymphocytic Leukemia. Hematologic Malignancies. Springer, Cham. https://doi.org/10.1007/978-3-030-11392-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11392-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11391-9

  • Online ISBN: 978-3-030-11392-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics