Skip to main content

Laboratory Diagnosis of Chronic Lymphocytic Leukaemia

  • Chapter
  • First Online:
Chronic Lymphocytic Leukemia

Part of the book series: Hematologic Malignancies ((HEMATOLOGIC))

Abstract

Chronic lymphocytic leukaemia (CLL) is one of the most common B-lymphoproliferative disorders (B-LPD) and is characterised by an expansion of monoclonal B-cells which are typically small lymphocytes with a narrow rim of cytoplasm and a dense nucleus lacking nucleoli and showing partially aggregated chromatin. The B-cells express CD19, CD5 and CD23 with weak CD20/CD79b and surface immunoglobulin although there is some heterogeneity in expression. Additional markers that are expressed in CLL and can help to distinguish other B-cell disorders include CD200, which is infrequently expressed in mantle cell lymphoma, as well as CD43 and ROR1 which are typically absent in lymphoplasmacytic and marginal-zone origin B-cell disorders. There is no pathognomonic molecular lesion in CLL. Chromosomal copy number variations are a common feature with the loss of 13q14, affecting microRNAs mir-15a/16-1 and potentially resulting in overexpression of BCL2, being an early feature of the disease in the majority of patients. However, genomic studies demonstrate a large array of additional molecular abnormalities with over 40 driver mutations potentially involved in the development of progressive disease. In the absence of extramedullary disease or cytopenia, the presence of circulating monoclonal CLL-phenotype B-cells below the level of 5 × 109/L is termed monoclonal B-cell lymphocytosis (MBL). Bone marrow investigation is not always required for diagnosis as a high proportion of patients are asymptomatic and only require active monitoring. However, it is important to recognise that CLL/MBL is often an incidental finding co-existing with other conditions, including in some cases another B-LPD. Therefore, multidisciplinary analysis of laboratory and clinical features is essential to reach a diagnosis and identify the appropriate clinical management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hallek M, Cheson BD, Catovsky D, Caligaris-Cappio F, Dighiero G, Döhner H, et al. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood. 2008;111:5446–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Eichhorst B, Robak T, Montserrat E, Ghia P, Hillmen P, Hallek M, et al. Chronic lymphocytic leukaemia: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2015;26(Suppl 5):v78–84.

    Article  PubMed  Google Scholar 

  3. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, et al. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: WHO; 2008.

    Google Scholar 

  4. Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127:2375–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. SEER Stat fact sheets - chronic lymphocytic leukemia. http://seer.cancer.gov/statfacts/html/clyl.html. Accessed 11 Feb 2010.

  6. HMRN - Incidence. http://www.hmrn.org/Statistics/Incidence.aspx. Accessed 8 Sep 2011.

  7. Landau DA, Tausch E, Taylor-Weiner AN, Stewart C, Reiter JG, Bahlo J, et al. Mutations driving CLL and their evolution in progression and relapse. Nature. 2015;526:525–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shanafelt T. Treatment of older patients with chronic lymphocytic leukemia: key questions and current answers. Hematology Am Soc Hematol Educ Program. 2013;2013:158–67.

    Article  PubMed  Google Scholar 

  9. van der Velden VHJ, Flores-Montero J, Perez-Andres M, Martin-Ayuso M, Crespo O, Blanco E, et al. Optimization and testing of dried antibody tube: the EuroFlow LST and PIDOT tubes as examples. J Immunol Methods. 2017. https://doi.org/10.1016/j.jim.2017.03.011.

  10. Stark RS, Liebes LF, Shelanski ML, Silber R. Anomalous function of vimentin in chronic lymphocytic leukemia lymphocytes. Blood. 1984;63:415–20.

    CAS  PubMed  Google Scholar 

  11. Nowakowski GS, Hoyer JD, Shanafelt TD, Zent CS, Call TG, Bone ND, et al. Percentage of smudge cells on routine blood smear predicts survival in chronic lymphocytic leukemia. J Clin Oncol. 2009;27:1844–9.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Rawstron AC, Kennedy B, Evans PA, Davies FE, Richards SJ, Haynes AP, et al. Quantitation of minimal disease levels in chronic lymphocytic leukemia using a sensitive flow cytometric assay improves the prediction of outcome and can be used to optimize therapy. Blood. 2001;98:29–35.

    Article  CAS  PubMed  Google Scholar 

  13. Deans JP, Polyak MJ. FMC7 is an epitope of CD20. Blood. 2008;111:2492. Author reply 2493–4.

    Google Scholar 

  14. van Dongen JJM, Lhermitte L, Böttcher S, Almeida J, van der Velden VHJ, Flores-Montero J, et al. EuroFlow antibody panels for standardized n-dimensional flow cytometric immunophenotyping of normal, reactive and malignant leukocytes. Leukemia. 2012;26:1908–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shen PU, Fuller SG, Rezuke WN, Sherburne BJ, DiGiuseppe JA. Laboratory, morphologic, and immunophenotypic correlates of surface immunoglobulin heavy chain isotype expression in B-cell chronic lymphocytic leukemia. Am J Clin Pathol. 2001;116:905–12.

    Article  CAS  PubMed  Google Scholar 

  16. Ten Hacken E, Sivina M, Kim E, O’Brien S, Wierda WG, Ferrajoli A, et al. Functional differences between IgM and IgD signaling in chronic lymphocytic leukemia. J Immunol. 2016;197:2522–31.

    Article  CAS  PubMed  Google Scholar 

  17. Stamatopoulos K, Belessi C, Moreno C, Boudjograh M, Guida G, Smilevska T, et al. Over 20% of patients with chronic lymphocytic leukemia carry stereotyped receptors: pathogenetic implications and clinical correlations. Blood. 2007;109:259–70.

    Article  CAS  PubMed  Google Scholar 

  18. Köhnke T, Wittmann VK, Bücklein VL, Lichtenegger F, Pasalic Z, Hiddemann W, et al. Diagnosis of CLL revisited: increased specificity by a modified five-marker scoring system including CD200. Br J Haematol. 2017;179:480–7. https://doi.org/10.1111/bjh.14901.

    Article  CAS  PubMed  Google Scholar 

  19. Acharya M, Borland G, Edkins AL, Maclellan LM, Matheson J, Ozanne BW, et al. CD23/FcεRII: molecular multi-tasking. Clin Exp Immunol. 2010;162:12–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Leroux D, Le Marc’Hadour F, Gressin R, Jacob MC, Keddari E, Monteil M, et al. Non-Hodgkin’s lymphomas with t(11;14)(q13;q32): a subset of mantle zone/intermediate lymphocytic lymphoma? Br J Haematol. 1991;77:346–53.

    Article  CAS  PubMed  Google Scholar 

  21. Dorfman DM, Pinkus GS. Distinction between small lymphocytic and mantle cell lymphoma by immunoreactivity for CD23. Mod Pathol. 1994;7:326–31.

    CAS  PubMed  Google Scholar 

  22. Matutes E, Owusu-Ankomah K, Morilla R, Garcia Marco J, Houlihan A, Que TH, et al. The immunological profile of B-cell disorders and proposal of a scoring system for the diagnosis of CLL. Leukemia. 1994;8:1640–5.

    CAS  PubMed  Google Scholar 

  23. Lampert IA, Wotherspoon A, Van Noorden S, Hasserjian RP. High expression of CD23 in the proliferation centers of chronic lymphocytic leukemia in lymph nodes and spleen. Hum Pathol. 1999;30:648–54.

    Article  CAS  PubMed  Google Scholar 

  24. Bennett F, Rawstron A, Plummer M, de Tute R, Moreton P, Jack A, et al. B-cell chronic lymphocytic leukaemia cells show specific changes in membrane protein expression during different stages of cell cycle. Br J Haematol. 2007;139:600–4.

    Article  PubMed  Google Scholar 

  25. Rawstron A, Munir T, Dalal S, Thompson J, Yap C, Brock K, et al. The Llr tap Iciclle trial assessing biological response to Ibrutinib in Cll: immediate disease redistribution precedes cell cycle arrest by 2 weeks with reduced bone marrow infiltration by 6 months. Haematologica. 2015;100:314–5.

    Google Scholar 

  26. Palumbo GA, Parrinello N, Fargione G, Cardillo K, Chiarenza A, Berretta S, et al. CD200 expression may help in differential diagnosis between mantle cell lymphoma and B-cell chronic lymphocytic leukemia. Leuk Res. 2009;33:1212–6.

    Article  CAS  PubMed  Google Scholar 

  27. Kumar S, Green GA, Teruya-Feldstein J, Raffeld M, Jaffe ES. Use of CD23 (BU38) on paraffin sections in the diagnosis of small lymphocytic lymphoma and mantle cell lymphoma. Mod Pathol. 1996;9:925–9.

    CAS  PubMed  Google Scholar 

  28. Gong JZ, Lagoo AS, Peters D, Horvatinovich J, Benz P, Buckley PJ. Value of CD23 determination by flow cytometry in differentiating mantle cell lymphoma from chronic lymphocytic leukemia/small lymphocytic lymphoma. Am J Clin Pathol. 2001;116:893–7.

    Article  CAS  PubMed  Google Scholar 

  29. Zettl A, Meister S, Katzenberger T, Kalla J, Ott MM, Müller-Hermelink H-K, et al. Immunohistochemical analysis of B-cell lymphoma using tissue microarrays identifies particular phenotypic profiles of B-cell lymphomas. Histopathology. 2003;43:209–19.

    Article  CAS  PubMed  Google Scholar 

  30. Kelemen K, Peterson LC, Helenowski I, Goolsby CL, Jovanovic B, Miyata S, et al. CD23+ mantle cell lymphoma: a clinical pathologic entity associated with superior outcome compared with CD23- disease. Am J Clin Pathol. 2008;130:166–77.

    Article  PubMed  Google Scholar 

  31. Challagundla P, Medeiros LJ, Kanagal-Shamanna R, Miranda RN, Jorgensen JL. Differential expression of CD200 in B-cell neoplasms by flow cytometry can assist in diagnosis, subclassification, and bone marrow staging. Am J Clin Pathol. 2014;142:837–44.

    Article  PubMed  Google Scholar 

  32. Sandes AF, de Lourdes Chauffaille M, Oliveira CRMC, Maekawa Y, Tamashiro N, Takao TT, et al. CD200 has an important role in the differential diagnosis of mature B-cell neoplasms by multiparameter flow cytometry. Cytometry B Clin Cytom. 2013;86(2):98–105. https://doi.org/10.1002/cytob.21128.

    Article  PubMed  Google Scholar 

  33. Alapat D, Coviello-Malle J, Owens R, Qu P, Barlogie B, Shaughnessy JD, et al. Diagnostic usefulness and prognostic impact of CD200 expression in lymphoid malignancies and plasma cell myeloma. Am J Clin Pathol. 2012;137:93–100.

    Article  PubMed  Google Scholar 

  34. Miao Y, Cao L, Sun Q, Li X-T, Wang Y, Qiao C, et al. Spectrum and immunophenotyping of 653 patients with B-cell chronic lymphoproliferative disorders in China: a single-centre analysis. Hematol Oncol. 2017;36(1):121–7. https://doi.org/10.1002/hon.2461.

    Article  CAS  PubMed  Google Scholar 

  35. Rawstron A, de Tute RM, Shingles J, Gorman L, Turner K, Evans PA, et al. Improving the differential diagnosis of Cd5+b-lymphoproliferative disorders. Haematologica. 2016;101:225.

    Google Scholar 

  36. Fukuda M, Carlsson SR. Leukosialin, a major sialoglycoprotein on human leukocytes as differentiation antigens. Med Biol. 1986;64:335–43.

    CAS  PubMed  Google Scholar 

  37. Lai R, Weiss LM, Chang KL, Arber DA. Frequency of CD43 expression in non-Hodgkin lymphoma. A survey of 742 cases and further characterization of rare CD43+ follicular lymphomas. Am J Clin Pathol. 1999;111:488–94.

    Article  CAS  PubMed  Google Scholar 

  38. Rawstron AC, Villamor N, Ritgen M, Böttcher S, Ghia P, Zehnder JL, et al. International standardized approach for flow cytometric residual disease monitoring in chronic lymphocytic leukaemia. Leukaemia. 2007;21:956–64.

    Article  CAS  Google Scholar 

  39. Durrieu F, Geneviève F, Arnoulet C, Brumpt C, Capiod J-C, Degenne M, et al. Normal levels of peripheral CD19(+) CD5(+) CLL-like cells: toward a defined threshold for CLL follow-up -- a GEIL-GOELAMS study. Cytometry B Clin Cytom. 2011;80:346–53.

    Article  PubMed  Google Scholar 

  40. Rawstron AC, Böttcher S, Letestu R, Villamor N, Fazi C, Kartsios H, et al. Improving efficiency and sensitivity: European Research Initiative in CLL (ERIC) update on the international harmonised approach for flow cytometric residual disease monitoring in CLL. Leukemia. 2013;27:142–9.

    Article  CAS  PubMed  Google Scholar 

  41. Rawstron AC. A complementary role of multiparameter flow-cytometry and high-throughput sequencing for minimal residual disease (MRD) detection in chronic lymphocytic leukemia (CLL): an European Research Initiative on CLL (ERIC) study. Leukemia. 2015;30(4):929–36.

    Article  CAS  PubMed  Google Scholar 

  42. Dowling AK, Liptrot SD, O’Brien D, Vandenberghe E. Optimization and validation of an 8-color single-tube assay for the sensitive detection of minimal residual disease in B-cell chronic lymphocytic leukemia detected via Flow cytometry. Lab Med. 2016;47:103–11.

    Article  PubMed  Google Scholar 

  43. Böttcher S, Ritgen M, Pott C, Brüggemann M, Raff T, Stilgenbauer S, et al. Comparative analysis of minimal residual disease detection using four-color flow cytometry, consensus IgH-PCR, and quantitative IgH PCR in CLL after allogeneic and autologous stem cell transplantation. Leukemia. 2004;18:1637–45.

    Article  CAS  PubMed  Google Scholar 

  44. Jung G, Eisenmann J-C, Thiébault S, Hénon P. Cell surface CD43 determination improves diagnostic precision in late B-cell diseases. Br J Haematol. 2003;120:496–9.

    Article  PubMed  Google Scholar 

  45. Sorigue M, Juncà J, Sarrate E, Grau J. Expression of CD43 in chronic lymphoproliferative leukemias. Cytometry B Clin Cytom. 2017;94(1):136–42. https://doi.org/10.1002/cyto.b.21509.

    Article  CAS  PubMed  Google Scholar 

  46. Klein U, Tu Y, Stolovitzky GA, Mattioli M, Cattoretti G, Husson H, et al. Gene expression profiling of B cell chronic lymphocytic leukemia reveals a homogeneous phenotype related to memory B cells. J Exp Med. 2001;194:1625–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rosenwald A, Alizadeh AA, Widhopf G, Simon R, Davis RE, Yu X, et al. Relation of gene expression phenotype to immunoglobulin mutation genotype in B cell chronic lymphocytic leukemia. J Exp Med. 2001;194:1639–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Baskar S, Kwong KY, Hofer T, Levy JM, Kennedy MG, Lee E, et al. Unique cell surface expression of receptor tyrosine kinase ROR1 in human B-cell chronic lymphocytic leukemia. Clin Cancer Res. 2008;14:396–404.

    Article  CAS  PubMed  Google Scholar 

  49. Daneshmanesh AH, Mikaelsson E, Jeddi-Tehrani M, Bayat AA, Ghods R, Ostadkarampour M, et al. Ror1, a cell surface receptor tyrosine kinase is expressed in chronic lymphocytic leukemia and may serve as a putative target for therapy. Int J Cancer. 2008;123:1190–5.

    Article  CAS  PubMed  Google Scholar 

  50. Uhrmacher S, Schmidt C, Erdfelder F, Poll-Wolbeck SJ, Gehrke I, Hallek M, et al. Use of the receptor tyrosine kinase-like orphan receptor 1 (ROR1) as a diagnostic tool in chronic lymphocytic leukemia (CLL). Leuk Res. 2011;35:1360–6.

    Article  CAS  PubMed  Google Scholar 

  51. Broome HE, Rassenti LZ, Wang H-Y, Meyer LM, Kipps TJ. ROR1 is expressed on hematogones (non-neoplastic human B-lymphocyte precursors) and a minority of precursor-B acute lymphoblastic leukemia. Leuk Res. 2011;35:1390–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Barna G, Mihalik R, Timár B, Tömböl J, Csende Z, Sebestyén A, et al. ROR1 expression is not a unique marker of CLL. Hematol Oncol. 2011;29:17–21.

    Article  CAS  PubMed  Google Scholar 

  53. Rawstron AC, Kreuzer K-A, Soosapilla A, Spacek M, Stehlikova O, Gambell P, et al. Reproducible diagnosis of Chronic Lymphocytic Leukemia by flow cytometry: an European Research Initiative on CLL (ERIC) & European Society for Clinical Cell Analysis (ESCCA) harmonisation project. Cytometry B Clin Cytom. 2017;94(1):121–8. https://doi.org/10.1002/cyto.b.21595.

    Article  CAS  Google Scholar 

  54. Teixeira Mendes LS, Peters N, Attygalle AD, Wotherspoon A. Cyclin D1 overexpression in proliferation centres of small lymphocytic lymphoma/chronic lymphocytic leukaemia. J Clin Pathol. 2017;70:899–902.

    Article  CAS  PubMed  Google Scholar 

  55. Gradowski JF, Sargent RL, Craig FE, Cieply K, Fuhrer K, Sherer C, et al. Chronic lymphocytic leukemia/small lymphocytic lymphoma with cyclin D1 positive proliferation centers do not have CCND1 translocations or gains and lack SOX11 expression. Am J Clin Pathol. 2012;138:132–9.

    Article  PubMed  Google Scholar 

  56. Abboudi Z, Patel K, Naresh KN. Cyclin D1 expression in typical chronic lymphocytic leukaemia. Eur J Haematol. 2009;83:203–7.

    Article  PubMed  Google Scholar 

  57. Martínez MR, Corradin A, Klein U, Álvarez MJ, Toffolo GM, di Camillo B, et al. Quantitative modeling of the terminal differentiation of B cells and mechanisms of lymphomagenesis. Proc Natl Acad Sci U S A. 2012;109:2672–7.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Soma LA, Craig FE, Swerdlow SH. The proliferation center microenvironment and prognostic markers in chronic lymphocytic leukemia/small lymphocytic lymphoma. Hum Pathol. 2006;37:152–9.

    Article  CAS  PubMed  Google Scholar 

  59. Meyer PN, Fu K, Greiner TC, Smith LM, Delabie J, Gascoyne RD, et al. Immunohistochemical methods for predicting cell of origin and survival in patients with diffuse large B-cell lymphoma treated with rituximab. J Clin Oncol. 2011;29:200–7.

    Article  PubMed  Google Scholar 

  60. Akhter A, Mahe E, Street L, Pournazari P, Perizzolo M, Shabani-Rad M-T, et al. CD10-positive mantle cell lymphoma: biologically distinct entity or an aberrant immunophenotype? Insight, through gene expression profile in a unique case series. J Clin Pathol. 2015;68:844–8.

    Article  CAS  PubMed  Google Scholar 

  61. Sanchez M-L, Almeida J, Gonzalez D, Gonzalez M, Garcia-Marcos M-A, Balanzategui A, et al. Incidence and clinicobiologic characteristics of leukemic B-cell chronic lymphoproliferative disorders with more than one B-cell clone. Blood. 2003;102:2994–3002.

    Article  CAS  PubMed  Google Scholar 

  62. Mahdi T, Rajab A, Padmore R, Porwit A. Characteristics of lymphoproliferative disorders with more than one aberrant cell population as detected by 10-color flow cytometry. Cytometry B Clin Cytom. 2016;94(2):230–8. https://doi.org/10.1002/cyto.b.21402.

    Article  CAS  PubMed  Google Scholar 

  63. Liptrot S, O’Brien D, Langabeer SE, Quinn F, Mackarel AJ, Elder P, et al. An immunophenotypic and molecular diagnosis of composite hairy cell leukaemia and chronic lymphocytic leukaemia. Med Oncol. 2013;30:692.

    Article  PubMed  Google Scholar 

  64. Paiva B, Montes MC, García-Sanz R, Ocio EM, Alonso J, de Las Heras N, et al. Multiparameter flow cytometry for the identification of the Waldenström’s clone in IgM-MGUS and Waldenström’s Macroglobulinemia: new criteria for differential diagnosis and risk stratification. Leukemia. 2014;28:166–73.

    Article  CAS  PubMed  Google Scholar 

  65. Challagundla P, Jorgensen JL, Kanagal-Shamanna R, Gurevich I, Pierson DM, Ferrajoli A, et al. Utility of quantitative flow cytometry immunophenotypic analysis of CD5 expression in small B-cell neoplasms. Arch Pathol Lab Med. 2014;138:903–9.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Swerdlow SH, Kuzu I, Dogan A, Dirnhofer S, Chan JKC, Sander B, et al. The many faces of small B cell lymphomas with plasmacytic differentiation and the contribution of MYD88 testing. Virchows Arch Int J Pathol. 2016;468:259–75.

    Article  CAS  Google Scholar 

  67. Moreau EJ, Matutes E, A’Hern RP, Morilla AM, Morilla RM, Owusu-Ankomah KA, et al. Improvement of the chronic lymphocytic leukemia scoring system with the monoclonal antibody SN8 (CD79b). Am J Clin Pathol. 1997;108:378–82.

    Article  CAS  PubMed  Google Scholar 

  68. Wood BL, Arroz M, Barnett D, DiGiuseppe J, Greig B, Kussick SJ, et al. 2006 Bethesda International Consensus recommendations on the immunophenotypic analysis of hematolymphoid neoplasia by flow cytometry: optimal reagents and reporting for the flow cytometric diagnosis of hematopoietic neoplasia. Cytometry B Clin Cytom. 2007;72(Suppl 1):S14–22.

    Article  PubMed  Google Scholar 

  69. Wood B, Jevremovic D, Béné MC, Yan M, Jacobs P, Litwin V, et al. Validation of cell-based fluorescence assays: practice guidelines from the ICSH and ICCS - part V - assay performance criteria. Cytometry B Clin Cytom. 2013;84:315–23.

    Article  CAS  PubMed  Google Scholar 

  70. Johansson U, Bloxham D, Couzens S, Jesson J, Morilla R, Erber W, et al. Guidelines on the use of multicolour flow cytometry in the diagnosis of haematological neoplasms. British Committee for Standards in Haematology. Br J Haematol. 2014;165:455–88.

    Article  PubMed  Google Scholar 

  71. Bain BJ, Barnett D, Linch D, Matutes E, Reilly JT. General Haematology Task Force of the British Committee for Standards in Haematology (BCSH), British Society of Haematology. Revised guideline on immunophenotyping in acute leukaemias and chronic lymphoproliferative disorders. Clin Lab Haematol. 2002;24:1–13.

    Article  CAS  PubMed  Google Scholar 

  72. Lacombe F, Bernal E, Bloxham D, Couzens S, Porta MGD, Johansson U, et al. Harmonemia: a universal strategy for flow cytometry immunophenotyping-A European LeukemiaNet WP10 study. Leukemia. 2016;30:1769–72.

    Article  CAS  PubMed  Google Scholar 

  73. Kalina T, Flores-Montero J, van der Velden VHJ, Martin-Ayuso M, Bottcher S, Ritgen M, et al. EuroFlow standardization of flow cytometer instrument settings and immunophenotyping protocols. Leukemia. 2012;26:1986–2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Dohner H, Stilgenbauer S, Benner A, Leupolt E, Krober A, Bullinger L, et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med. 2000;343:1910–6.

    Article  CAS  PubMed  Google Scholar 

  75. Lazarian G, Guièze R, Wu CJ. Clinical implications of novel genomic discoveries in chronic lymphocytic leukemia. J Clin Oncol. 2017;35:984–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A. 2002;99:15524–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A. 2005;102:13944–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Parker H, Rose-Zerilli MJJ, Parker A, Chaplin T, Wade R, Gardiner A, et al. 13q deletion anatomy and disease progression in patients with chronic lymphocytic leukemia. Leukemia. 2011;25:489–97.

    Article  CAS  PubMed  Google Scholar 

  79. Landau DA, Carter SL, Stojanov P, McKenna A, Stevenson K, Lawrence MS, et al. Evolution and impact of subclonal mutations in chronic lymphocytic leukemia. Cell. 2013;152:714–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Klein U, Lia M, Crespo M, Siegel R, Shen Q, Mo T, et al. The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell. 2010;17(1):28–40. https://doi.org/10.1016/j.ccr.2009.11.019.

    Article  CAS  PubMed  Google Scholar 

  81. Sander S, Bullinger L, Leupolt E, Benner A, Kienle D, Katzenberger T, et al. Genomic aberrations in mantle cell lymphoma detected by interphase fluorescence in situ hybridization. Incidence and clinicopathological correlations. Haematologica. 2008;93:680–7.

    Article  CAS  PubMed  Google Scholar 

  82. Nguyen-Khac F, Lambert J, Chapiro E, Grelier A, Mould S, Barin C, et al. Chromosomal aberrations and their prognostic value in a series of 174 untreated patients with Waldenström’s macroglobulinemia. Haematologica. 2013;98:649–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Balatti V, Bottoni A, Palamarchuk A, Alder H, Rassenti LZ, Kipps TJ, et al. NOTCH1 mutations in CLL associated with trisomy 12. Blood. 2012;119:329–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Villamor N, Conde L, Martínez-Trillos A, Cazorla M, Navarro A, Beà S, et al. NOTCH1 mutations identify a genetic subgroup of chronic lymphocytic leukemia patients with high risk of transformation and poor outcome. Leukemia. 2013;27:1100–6.

    Article  CAS  PubMed  Google Scholar 

  85. Matutes E, Oscier D, Garcia-Marco J, Ellis J, Copplestone A, Gillingham R, et al. Trisomy 12 defines a group of CLL with atypical morphology: correlation between cytogenetic, clinical and laboratory features in 544 patients. Br J Haematol. 1996;92:382–8.

    Article  CAS  PubMed  Google Scholar 

  86. Tam CS, Otero-Palacios J, Abruzzo LV, Jorgensen JL, Ferrajoli A, Wierda WG, et al. Chronic lymphocytic leukaemia CD20 expression is dependent on the genetic subtype: a study of quantitative flow cytometry and fluorescent in-situ hybridization in 510 patients. Br J Haematol. 2008;141:36–40.

    Article  PubMed  Google Scholar 

  87. Quijano S, López A, Rasillo A, Sayagués JM, Barrena S, Sánchez ML, et al. Impact of trisomy 12, del(13q), del(17p), and del(11q) on the immunophenotype, DNA ploidy status, and proliferative rate of leukemic B-cells in chronic lymphocytic leukemia. Cytometry B Clin Cytom. 2008;74:139–49.

    Article  PubMed  Google Scholar 

  88. Rossi D, Rasi S, Spina V, Bruscaggin A, Monti S, Ciardullo C, et al. Integrated mutational and cytogenetic analysis identifies new prognostic subgroups in chronic lymphocytic leukemia. Blood. 2013;121:1403–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Raffeld M, Jaffe ES. bcl-1, t(11;14), and mantle cell-derived lymphomas. Blood. 1991;78:259–63.

    CAS  PubMed  Google Scholar 

  90. Nowakowski GS, Dewald GW, Hoyer JD, Paternoster SF, Stockero KJ, Fink SR, et al. Interphase fluorescence in situ hybridization with an IGH probe is important in the evaluation of patients with a clinical diagnosis of chronic lymphocytic leukaemia. Br J Haematol. 2005;130:36–42.

    Article  CAS  PubMed  Google Scholar 

  91. Stilgenbauer S, Bullinger L, Lichter P, Döhner H, German CLL Study Group (GCLLSG). Chronic lymphocytic leukemia. Genetics of chronic lymphocytic leukemia: genomic aberrations and V(H) gene mutation status in pathogenesis and clinical course. Leukemia. 2002;16:993–1007.

    Article  CAS  PubMed  Google Scholar 

  92. Dyer MJ, Zani VJ, Lu WZ, O’Byrne A, Mould S, Chapman R, et al. BCL2 translocations in leukemias of mature B cells. Blood. 1994;83:3682–8.

    CAS  PubMed  Google Scholar 

  93. Damle RN, Wasil T, Fais F, Ghiotto F, Valetto A, Allen SL, et al. Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood. 1999;94:1840–7.

    CAS  PubMed  Google Scholar 

  94. Hamblin TJ, Davis Z, Gardiner A, Oscier DG, Stevenson FK. Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood. 1999;94:1848–54.

    CAS  PubMed  Google Scholar 

  95. Agathangelidis A, Darzentas N, Hadzidimitriou A, Brochet X, Murray F, Yan X-J, et al. Stereotyped B-cell receptors in one-third of chronic lymphocytic leukemia: a molecular classification with implications for targeted therapies. Blood. 2012;119:4467–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Sutton L-A, Hadzidimitriou A, Baliakas P, Agathangelidis A, Langerak AW, Stilgenbauer S, et al. Immunoglobulin genes in chronic lymphocytic leukemia: key to understanding the disease and improving risk stratification. Haematologica. 2017;102:968–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Rossi D, Terzi-di-Bergamo L, De Paoli L, Cerri M, Ghilardi G, Chiarenza A, et al. Molecular prediction of durable remission after first-line fludarabine-cyclophosphamide-rituximab in chronic lymphocytic leukemia. Blood. 2015;126:1921–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Fischer K, Bahlo J, Fink AM, Goede V, Herling CD, Cramer P, et al. Long-term remissions after FCR chemoimmunotherapy in previously untreated patients with CLL: updated results of the CLL8 trial. Blood. 2016;127:208–15.

    Article  CAS  PubMed  Google Scholar 

  99. Thompson PA, Tam CS, O’Brien SM, Wierda WG, Stingo F, Plunkett W, et al. Fludarabine, cyclophosphamide, and rituximab treatment achieves long-term disease-free survival in IGHV-mutated chronic lymphocytic leukemia. Blood. 2016;127:303–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Furman RR, Sharman JP, Coutre SE, Cheson BD, Pagel JM, Hillmen P, et al. Idelalisib and rituximab in relapsed chronic lymphocytic leukemia. N Engl J Med. 2014;370:997–1007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Burger JA, Tedeschi A, Barr PM, Robak T, Owen C, Ghia P, et al. Ibrutinib as initial therapy for patients with chronic lymphocytic leukemia. N Engl J Med. 2015;373:2425–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Minici C, Gounari M, Übelhart R, Scarfò L, Dühren-von Minden M, Schneider D, et al. Distinct homotypic B-cell receptor interactions shape the outcome of chronic lymphocytic leukaemia. Nat Commun. 2017;8:15746.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Dagklis A, Fazi C, Sala C, Cantarelli V, Scielzo C, Massacane R, et al. The immunoglobulin gene repertoire of low-count chronic lymphocytic leukemia (CLL)-like monoclonal B lymphocytosis is different from CLL: diagnostic implications for clinical monitoring. Blood. 2009;114:26–32.

    Article  CAS  PubMed  Google Scholar 

  104. Rosenwald A, Wright G, Wiestner A, Chan WC, Connors JM, Campo E, et al. The proliferation gene expression signature is a quantitative integrator of oncogenic events that predicts survival in mantle cell lymphoma. Cancer Cell. 2003;3:185–97.

    Article  CAS  PubMed  Google Scholar 

  105. Lens D, De Schouwer PJ, Hamoudi RA, Abdul-Rauf M, Farahat N, Matutes E, et al. p53 abnormalities in B-cell prolymphocytic leukemia. Blood. 1997;89:2015–23.

    CAS  PubMed  Google Scholar 

  106. Del Giudice I, Osuji N, Dexter T, Brito-Babapulle V, Parry-Jones N, Chiaretti S, et al. B-cell prolymphocytic leukemia and chronic lymphocytic leukemia have distinctive gene expression signatures. Leukemia. 2009;23:2160–7.

    Article  PubMed  Google Scholar 

  107. van der Velden VHJ, Hoogeveen PG, de Ridder D, Schindler-van der Struijk M, van Zelm MC, Sanders M, et al. B-cell prolymphocytic leukemia: a specific subgroup of mantle cell lymphoma. Blood. 2014;124:412–9.

    Article  CAS  PubMed  Google Scholar 

  108. Xu L, Tsakmaklis N, Yang G, Chen JG, Liu X, Demos M, et al. Acquired mutations associated with ibrutinib resistance in Waldenström macroglobulinemia. Blood. 2017;129:2519–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Berentsen S, Beiske K, Tjønnfjord GE. Primary chronic cold agglutinin disease: an update on pathogenesis, clinical features and therapy. Hematology. 2007;12:361–70.

    Article  PubMed  Google Scholar 

  110. de Tute RM, Rawstron AC, Evans P, Owen RG. Cold agglutinin disease is a phenotypically distinct clonal B-cell disorder. Br J Haematol. 2016;173:80.

    Google Scholar 

  111. Randen U, Trøen G, Tierens A, Steen C, Warsame A, Beiske K, et al. Primary cold agglutinin-associated lymphoproliferative disease: a B-cell lymphoma of the bone marrow distinct from lymphoplasmacytic lymphoma. Haematologica. 2014;99:497–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Rawstron AC, Shingles J, de Tute R, Bennett F, Jack AS, Hillmen P. Chronic lymphocytic leukaemia (CLL) and CLL-type monoclonal B-cell lymphocytosis (MBL) show differential expression of molecules involved in lymphoid tissue homing. Cytometry B Clin Cytom. 2010;78B:S42–6.

    Article  CAS  Google Scholar 

  113. Parikh SA, Rabe KG, Call TG, Zent CS, Habermann TM, Ding W, et al. Diffuse large B-cell lymphoma (Richter syndrome) in patients with chronic lymphocytic leukaemia (CLL): a cohort study of newly diagnosed patients. Br J Haematol. 2013;162:774–82.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Rossi D. Richter’s syndrome: novel and promising therapeutic alternatives. Best Pract Res Clin Haematol. 2016;29:30–9.

    Article  PubMed  Google Scholar 

  115. Mao Z, Quintanilla-Martinez L, Raffeld M, Richter M, Krugmann J, Burek C, et al. IgVH mutational status and clonality analysis of Richter’s transformation: diffuse large B-cell lymphoma and Hodgkin lymphoma in association with B-cell chronic lymphocytic leukemia (B-CLL) represent 2 different pathways of disease evolution. Am J Surg Pathol. 2007;31:1605–14.

    Article  PubMed  Google Scholar 

  116. Eyre TA, Schuh A. An update for Richter syndrome - new directions and developments. Br J Haematol. 2017;178:508–20.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andy C. Rawstron .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rawstron, A.C., de Tute, R.M., Owen, R.G., Hillmen, P. (2019). Laboratory Diagnosis of Chronic Lymphocytic Leukaemia. In: Hallek, M., Eichhorst, B., Catovsky, D. (eds) Chronic Lymphocytic Leukemia. Hematologic Malignancies. Springer, Cham. https://doi.org/10.1007/978-3-030-11392-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11392-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11391-9

  • Online ISBN: 978-3-030-11392-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics