Spherical Panorama Image Watermarking Using Viewpoint Detection

  • Jihyeon KangEmail author
  • Sang-Keun Ji
  • Heung-Kyu Lee
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11378)


Even though interest in spherical panorama content has increased rapidly, few studies have examined watermarking techniques for this content. We present a new watermarking technique to protect spherical panorama images as well as view-images that are rendered with a specific viewpoint. Solving the watermark synchronization problem in the detection process requires finding the viewpoint of a view-image. Scale Invariant Feature Transform (SIFT) and Euclidea transformation matrix are used to find viewpoint information of a detection target view-image. Using the viewpoint information, a view-image can be recovered to a source image and then we can detect watermark from it. The experimental results show robustness against several attacks such as JPEG compression, Gaussian filter, and noise addition attack.


Image watermarking Spherical panorama Omni-directional image 360 VR watermarking 



This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2016R1A2B2009595).


  1. 1.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Barni, M., et al.: A DCT-domain system for robust image watermarking. Signal process. 66(3), 357–372 (1998)CrossRefGoogle Scholar
  3. 3.
    Pereira, S., Pun, T.: Robust template matching for affine resistant image watermarks. IEEE Trans. Image Process. 9(6), 1123–1129 (2000)CrossRefGoogle Scholar
  4. 4.
    Xia, X.-G., Boncelet, C.G., Arce, G.R.: A multiresolution watermark for digital images. In: Proceedings of International Conference on Image Processing, vol. 1. IEEE (1997)Google Scholar
  5. 5.
    Akhaee, M.A., Sahraeian, S.M.E., Marvasti, F.: Contourlet-based image watermarking using optimum detector in a noisy environment. IEEE Trans. Image Process. 19(4), 967–980 (2010)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Cox, I.J., et al.: Secure spread spectrum watermarking for multimedia. IEEE Trans. Image Process. 6(12), 1673–1687 (1997)CrossRefGoogle Scholar
  7. 7.
    Chen, B., Wornell, G.W.: Quantization index modulation: a class of provably good methods for digital watermarking and information embedding. IEEE Trans. Inf. Theory 47(4), 1423–1443 (2001)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Lee, H.-Y., Kim, H., Lee, H.-K.: Robust image watermarking using local invariant features. Opt. Eng. 45(3), 037002 (2006)CrossRefGoogle Scholar
  9. 9.
    Chang, C.-C., Tsai, P., Lin, C.-C.: SVD-based digital image watermarking scheme. Pattern Recogn. Lett. 26(10), 1577–1586 (2005)CrossRefGoogle Scholar
  10. 10.
    Chandra, D.V.S.: Digital image watermarking using singular value decomposition. In: The 2002 45th Midwest Symposium on Circuits and Systems, 2002. MWSCAS-2002, vol. 3. IEEE (2002)Google Scholar
  11. 11.
    Ji, S.-K., Kang, J.-H., Lee, H.-K.: Perceptual watermarking for stereoscopic 3D image based on visual discomfort. In: Kim, K., Joukov, N. (eds.) ICISA 2017. LNEE, vol. 424, pp. 323–330. Springer, Singapore (2017). Scholar
  12. 12.
    Lu, W., Hongtao, L., Chung, F.-L.: Feature based watermarking using watermark template match. Appl. Math. Comput. 177(1), 377–386 (2006)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Lin, Y.-H., Ja-Ling, W.: A digital blind watermarking for depth-image-based rendering 3D images. IEEE Trans. Broadcast. 57(2), 602–611 (2011)CrossRefGoogle Scholar
  14. 14.
    Wang, S., Cui, C., Niu, X.: Watermarking for DIBR 3D images based on SIFT feature points. Measurement 48, 54–62 (2014)CrossRefGoogle Scholar
  15. 15.
    Kim, H.-D., et al.: Robust DT-CWT watermarking for DIBR 3D images. IEEE Trans. Broadcast. 58(4), 533–543 (2012)CrossRefGoogle Scholar
  16. 16.
    Equirectangular flickr group. Accessed 6 July 2018
  17. 17.
    Mun, S.-M., et al.: A robust blind watermarking using convolutional neural network. arXiv preprint arXiv:1704.03248 (2017)
  18. 18.
    Kim, W.-H., et al.: Convolutional neural network architecture for recovering watermark synchronization. arXiv preprint arXiv:1805.06199 (2018)
  19. 19.
    Kang, I.-S., Seo, Y.-H., Kim, D.-W.: Blind digital watermarking methods for omni-directional panorama images using feature points. Korean Inst. Broadcast Media Eng. 22(6), 785–799 (2017)Google Scholar
  20. 20.
    Miura, Y., et al.: Data hiding technique for omnidirectional JPEG images displayed on VR spaces. In: 2018 International Workshop on Advanced Image Technology (IWAIT). IEEE (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Graduate School of Information Security, School of ComputingKorea Advanced Institute of Science and TechnologyDaejeonSouth Korea
  2. 2.School of ComputingKorea Advanced Institute of Science and TechnologyDaejeonSouth Korea

Personalised recommendations