Skip to main content

Provably Secure Generative Steganography Based on Autoregressive Model

  • Conference paper
  • First Online:
Book cover Digital Forensics and Watermarking (IWDW 2018)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11378))

Included in the following conference series:

Abstract

Synthetic data and generative models have been more and more popular with the rapid development of machine learning and artificial intelligence (AI). Consequently, generative steganography, a novel steganographic method finishing the operation of steganography directly in the process of image generation, tends to get more attention. However, most of the existing generative steganographic methods have more or less shortcomings, such as low security, small capacity or limited to certain images. In this paper, we propose a novel framework for generative steganography based on autoregressive model, or rather, PixelCNN. Theoretical derivation has been taken to prove the security of the framework. A simplified version is also proposed for binary embedding with lower complexity, for which the experiments show that the proposed method can resist the existing steganalytic methods.

This work was supported in part by the National Natural Science Foundation of China under Grant U1636201 and 61572452.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Filler, T., Fridrich, J.: Gibbs construction in steganography. IEEE Trans. Inf. Forensics Secur. 5(4), 705–720 (2010)

    Article  Google Scholar 

  2. Holub, V., Fridrich, J.: Designing steganographic distortion using directional filters. In: 2012 IEEE International Workshop on Information Forensics and Security (WIFS), pp. 234–239. IEEE (2012)

    Google Scholar 

  3. Holub, V., Fridrich, J.: Digital image steganography using universal distortion. In: Proceedings of the First ACM Workshop on Information Hiding and Multimedia Security, pp. 59–68. ACM (2013)

    Google Scholar 

  4. Li, B., Wang, M., Huang, J., Li, X.: A new cost function for spatial image steganography. In: 2014 IEEE International Conference on Image Processing (ICIP), pp. 4206–4210. IEEE (2014)

    Google Scholar 

  5. Sedighi, V., Cogranne, R., Fridrich, J.: Content-adaptive steganography by minimizing statistical detectability. IEEE Trans. Inf. Forensics Secur. 11(2), 221–234 (2016)

    Article  Google Scholar 

  6. Pevny, T., Bas, P., Fridrich, J.: Steganalysis by subtractive pixel adjacency matrix. IEEE Trans. Inf. Forensics Secur. 5(2), 215–224 (2010)

    Article  Google Scholar 

  7. Fridrich, J., Kodovsky, J.: Rich models for steganalysis of digital images. IEEE Trans. Inf. Forensics Secur. 7(3), 868–882 (2012)

    Article  Google Scholar 

  8. Denemark, T., Sedighi, V., Holub, V., Cogranne, R., Fridrich, J.: Selection-channel-aware rich model for steganalysis of digital images. In: 2014 IEEE International Workshop on Information Forensics and Security (WIFS), pp. 48–53. IEEE (2014)

    Google Scholar 

  9. Guanshuo, X., Han-Zhou, W., Shi, Y.-Q.: Structural design of convolutional neural networks for steganalysis. IEEE Signal Process. Lett. 23(5), 708–712 (2016)

    Article  Google Scholar 

  10. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)

  11. Goodfellow, I.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  12. Larochelle, H., Murray, I.: The neural autoregressive distribution estimator. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pp. 29–37 (2011)

    Google Scholar 

  13. Theis, L., Bethge, M.: Generative image modeling using spatial LSTMs. In: Advances in Neural Information Processing Systems, pp. 1927–1935 (2015)

    Google Scholar 

  14. van den Oord, A., Kalchbrenner, N., Kavukcuoglu, K.: Pixel recurrent neural networks. arXiv preprint arXiv:1601.06759 (2016)

  15. Hayes, J., Danezis, G.: Generating steganographic images via adversarial training. In: Advances in Neural Information Processing Systems, pp. 1951–1960 (2017)

    Google Scholar 

  16. Wu, K.-C., Wang, C.-M.: Steganography using reversible texture synthesis. IEEE Trans. Image Process. 24(1), 130–139 (2015)

    Article  MathSciNet  Google Scholar 

  17. Zhou, Z., Sun, H., Harit, R., Chen, X., Sun, X.: Coverless image steganography without embedding. In: Huang, Z., Sun, X., Luo, J., Wang, J. (eds.) ICCCS 2015. LNCS, vol. 9483, pp. 123–132. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27051-7_11

    Chapter  Google Scholar 

  18. van den Oord, A., Kalchbrenner, N., Espeholt, L., Vinyals, O., Graves, A., et al.: Conditional image generation with pixelCNN decoders. In: Advances in Neural Information Processing Systems, pp. 4790–4798 (2016)

    Google Scholar 

  19. Salimans, T., Karpathy, A., Chen, X., Kingma, D.P.: PixelCNN++: improving the pixelCNN with discretized logistic mixture likelihood and other modifications. arXiv preprint arXiv:1701.05517 (2017)

  20. Triantafyllidis, G.A., Strintzis, M.G.: A context based adaptive arithmetic coding technique for lossless image compression. IEEE Signal Process. Lett. 6(7), 168–170 (1999)

    Article  Google Scholar 

  21. https://en.wikipedia.org/wiki/Rejection_sampling#Advantages_over_sampling_using_naive_methods

  22. Hopper, N.J., Langford, J., von Ahn, L.: Provably secure steganography. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 77–92. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9_6

    Chapter  Google Scholar 

  23. Frey dataset. http://www.cs.nyu.edu/~roweis/data/frey_rawface.mat

  24. Anime dataset. https://drive.google.com/file/d/1yOrpEjEYU8LXl8h-k7gVaaQ0ZdGYfnU_/view?usp=sharing

  25. Volkhonskiy, D., Borisenko, B., Burnaev, E.: Generative adversarial networks for image steganography (2016)

    Google Scholar 

  26. Shi, H., Dong, J., Wang, W., Qian, Y., Zhang, X.: SSGAN: Secure steganography based on generative adversarial networks. arXiv preprint arXiv:1707.01613 (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiming Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, K., Chen, K., Zhang, W., Yu, N. (2019). Provably Secure Generative Steganography Based on Autoregressive Model. In: Yoo, C., Shi, YQ., Kim, H., Piva, A., Kim, G. (eds) Digital Forensics and Watermarking. IWDW 2018. Lecture Notes in Computer Science(), vol 11378. Springer, Cham. https://doi.org/10.1007/978-3-030-11389-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11389-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11388-9

  • Online ISBN: 978-3-030-11389-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics