Skip to main content

Proximal Mappings and Moreau Envelopes of Single-Variable Convex Piecewise Cubic Functions and Multivariable Gauge Functions

  • Chapter
  • First Online:
Book cover Nonsmooth Optimization and Its Applications

Part of the book series: International Series of Numerical Mathematics ((ISNM,volume 170))

Abstract

This work presents a collection of useful properties of the Moreau envelope for finite-dimensional, proper, lower semicontinuous, convex functions. In particular, gauge functions and piecewise cubic functions are investigated and their Moreau envelopes categorized. Characterizations of convex Moreau envelopes are established; topics include strict convexity, strong convexity, and Lipschitz continuity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Thank you to the anonymous referee for providing this reference.

References

  1. F. Aragón, A. Dontchev, and M. Geoffroy. Convergence of the proximal point method for metrically regular mappings. In CSVAA 2004, volume 17 of ESAIM Proc., pages 1–8. EDP Sci., Les Ulis, 2007.

    Google Scholar 

  2. A. Bajaj, W. Hare, and Y. Lucet. Visualization of the ε-subdifferential of piecewise linear–quadratic functions. Comput. Optim. Appl., 67(2):421–442, 2017.

    Article  MathSciNet  Google Scholar 

  3. H. Bauschke and P. Combettes. Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, New York, 2011.

    Book  Google Scholar 

  4. T. Bayen and A. Rapaport. About Moreau–Yosida regularization of the minimal time crisis problem. J. Convex Anal., 23(1):263–290, 2016.

    MathSciNet  MATH  Google Scholar 

  5. G. Bento and J. Cruz. Finite termination of the proximal point method for convex functions on Hadamard manifolds. Optimization, 63(9):1281–1288, 2014.

    Article  MathSciNet  Google Scholar 

  6. Y. Chen, C. Kan, and W. Song. The Moreau envelope function and proximal mapping with respect to the Bregman distances in Banach spaces. Vietnam J. Math., 40(2–3):181–199, 2012.

    MathSciNet  MATH  Google Scholar 

  7. B. Gardiner and Y. Lucet. Convex hull algorithms for piecewise linear-quadratic functions in computational convex analysis. Set-Valued Var. Anal., 18(3–4):467–482, 2010.

    Article  MathSciNet  Google Scholar 

  8. R. Hamilton. The inverse function theorem of Nash and Moser. Bull. Amer. Math. Soc., 7(1):65–222, 1982.

    Article  MathSciNet  Google Scholar 

  9. W. Hare and Y. Lucet. Derivative-free optimization via proximal point methods. J. Optim. Theory Appl., 160(1):204–220, 2014.

    Article  MathSciNet  Google Scholar 

  10. W. Hare and R. Poliquin. Prox-regularity and stability of the proximal mapping. J. Convex Anal., 14(3):589–606, 2007.

    MathSciNet  MATH  Google Scholar 

  11. M. Hintermüller and M. Hinze. Moreau–Yosida regularization in state constrained elliptic control problems: error estimates and parameter adjustment. SIAM J. Numer. Anal., 47(3):1666–1683, 2009.

    Article  MathSciNet  Google Scholar 

  12. A. Jourani, L. Thibault, and D. Zagrodny. Differential properties of the Moreau envelope. J. Funct. Anal., 266(3):1185–1237, 2014.

    Article  MathSciNet  Google Scholar 

  13. A. Jourani and E. Vilches. Moreau–Yosida regularization of state-dependent sweeping processes with nonregular sets. J. Optim. Theory Appl., 173(1):91–116, 2017.

    Article  MathSciNet  Google Scholar 

  14. C. Kan and W. Song. The Moreau envelope function and proximal mapping in the sense of the Bregman distance. Nonlinear Anal., 75(3):1385–1399, 2012.

    Article  MathSciNet  Google Scholar 

  15. M. Keuthen and M. Ulbrich. Moreau–Yosida regularization in shape optimization with geometric constraints. Comput. Optim. Appl., 62(1):181–216, 2015.

    Article  MathSciNet  Google Scholar 

  16. C. Lemaréchal and C. Sagastizábal. Practical aspects of the Moreau–Yosida regularization: theoretical preliminaries. SIAM J. Optim., 7(2):367–385, 1997.

    Article  MathSciNet  Google Scholar 

  17. Y. Lucet, H. Bauschke, and M. Trienis. The piecewise linear-quadratic model for computational convex analysis. Comput. Optim. Appl., 43(1):95–118, 2009.

    Article  MathSciNet  Google Scholar 

  18. F. Meng and Y. Hao. Piecewise smoothness for Moreau–Yosida approximation to a piecewise C 2 convex function. Adv. Math., 30(4):354–358, 2001.

    MathSciNet  MATH  Google Scholar 

  19. R. Mifflin, L. Qi, and D. Sun. Properties of the Moreau–Yosida regularization of a piecewise C 2 convex function. Math. Program., 84(2):269–281, 1999.

    Article  MathSciNet  Google Scholar 

  20. J.-J. Moreau. Propriétés des applications “prox”. C. R. Acad. Sci. Paris, 256:1069–1071, 1963.

    MathSciNet  MATH  Google Scholar 

  21. J.-J. Moreau. Proximité et dualité dans un espace Hilbertien. Bull. Soc. Math. France, 93:273–299, 1965.

    Article  MathSciNet  Google Scholar 

  22. C. Planiden and X. Wang. Strongly convex functions, Moreau envelopes and the generic nature of convex functions with strong minimizers. SIAM J. Optim., 26(2):1341–1364, 2016.

    Article  MathSciNet  Google Scholar 

  23. R. Poliquin and R. Rockafellar. Generalized Hessian properties of regularized nonsmooth functions. SIAM J. Optim., 6(4):1121–1137, 1996.

    Article  MathSciNet  Google Scholar 

  24. R. Rockafellar. Convex Analysis. Princeton Landmarks in Mathematics. Princeton University Press, Princeton, NJ, 1997.

    MATH  Google Scholar 

  25. R. Rockafellar and J.-B. Wets. Variational Analysis. Springer-Verlag, Berlin, 1998.

    Book  Google Scholar 

  26. X. Wang. On Chebyshev functions and Klee functions. J. Math. Anal. Appl., 368(1):293–310, 2010.

    Article  MathSciNet  Google Scholar 

  27. H. Xiao and X. Zeng. A proximal point method for the sum of maximal monotone operators. Math. Methods Appl. Sci., 37(17):2638–2650, 2014.

    Article  MathSciNet  Google Scholar 

  28. K. Yosida. Functional Analysis. Die Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, Berlin, 1965.

    Google Scholar 

  29. A. Zaslavski. Convergence of a proximal point method in the presence of computational errors in Hilbert spaces. SIAM J. Optim., 20(5):2413–2421, 2010.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous referee for the many useful comments and suggestions made to improve this manuscript. Chayne Planiden was supported by UBC University Graduate Fellowship and by Natural Sciences and Engineering Research Council of Canada. Xianfu Wang was partially supported by a Natural Sciences and Engineering Research Council of Canada Discovery Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Planiden, C., Wang, X. (2019). Proximal Mappings and Moreau Envelopes of Single-Variable Convex Piecewise Cubic Functions and Multivariable Gauge Functions. In: Hosseini, S., Mordukhovich, B., Uschmajew, A. (eds) Nonsmooth Optimization and Its Applications. International Series of Numerical Mathematics, vol 170. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-11370-4_5

Download citation

Publish with us

Policies and ethics