Skip to main content

An Approximate ADMM for Solving Linearly Constrained Nonsmooth Optimization Problems with Two Blocks of Variables

  • Chapter
  • First Online:
Book cover Nonsmooth Optimization and Its Applications

Part of the book series: International Series of Numerical Mathematics ((ISNM,volume 170))

Abstract

Nonsmooth convex optimization problems with two blocks of variables subject to linear constraints are considered. A new version of the alternating direction method of multipliers is developed for solving these problems. In this method the subproblems are solved approximately. The convergence of the method is studied. New test problems are designed and used to verify the efficiency of the proposed method and to compare it with two versions of the proximal bundle method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Bagirov, N. Karmitsa, and M. Makela. Introduction to Nonsmooth Optimization: Theory, Practice and Software. Springer, Cham, 2014.

    Book  Google Scholar 

  2. A. Bnouhachem, M.H. Xu, M. Khalfaoui, and Sh. Zhaohana. A new alternating direction method for solving variational inequalities. Computers and Mathematics with Applications, 62 (2011), 626–634.

    Article  MathSciNet  Google Scholar 

  3. S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning, 3(1) (2011), 1–122.

    Article  Google Scholar 

  4. Sh. Cao, Y. Xiao, and H. Zhu. Linearized alternating directions method for l 1 -norm inequality constrained l 1 -norm minimization. Applied Numerical Mathematics, 85 (2014), 142–153.

    Article  MathSciNet  Google Scholar 

  5. F.H. Clarke. Optimization and Nonsmooth Analysis. Canadian Mathematical Society series of monographs and advanced texts. Wiley-Interscience, 1983.

    MATH  Google Scholar 

  6. E.D. Dolan and J.J. Moré. Benchmarking optimization software with performance profiles. Mathematical Programming, 91(2) (2002), 201–213.

    Article  MathSciNet  Google Scholar 

  7. J. Eckstein and W. Yao. Augmented Lagrangian and alternating direction methods for convex optimization: A tutorial and some illustrative computational results. In RUTCOR Research Reports, 32. 2012.

    Google Scholar 

  8. M. El Anbari, S. Alam, and H. Bensmail. COFADMM: A computational features selection with alternating direction method of multipliers. Procedia Computer Science, 29 (2014), 821–830.

    Google Scholar 

  9. M. Fukushima. Application of the alternating direction method of multipliers to separable convex programming problems. Computational Optimization and Applications, 1(1) (1992), 93–111.

    Article  MathSciNet  Google Scholar 

  10. D. Gabay and B. Mercier. A dual algorithm for the solution of nonlinear variational problems via finite element approximations. Computers and Mathematics with Applications, 2 (1976) 17–40.

    Article  Google Scholar 

  11. R. Glowinski and A. Marrocco. Sur l approximation par éléments finis d ordre 1 et la résolution par pénalisation-dualité d une classe de problémes de dirichlet. RAIRO, 2 (1975), 41–76.

    Google Scholar 

  12. D. Han and H.K. Lo. A new stepsize rule in He and Zhou’s alternating direction method. Applied Mathematics Letters, 15 (2002), 181–185.

    Article  MathSciNet  Google Scholar 

  13. B. He and J. Zhou. A modified alternating direction method for convex minimization problems. Applied Mathematics Letters, 13 (2000), 123–130.

    Article  MathSciNet  Google Scholar 

  14. M.R. Hestenes. Multiplier and gradient methods. Journal of Optimization Theory and Applications, 4 (1969) 302–320.

    MathSciNet  MATH  Google Scholar 

  15. K.C. Kiwiel. An alternating linearization bundle method for convex optimization and nonlinear multicommodity flow problems. Mathematical Programming, Ser. A, 130 (2011), 59–84.

    Google Scholar 

  16. X. Li, L. Mo, X. Yuan, and J. Zhang. Linearized alternating direction method of multipliers for sparse group and fused lasso models. Computational Statistics and Data Analysis, 79 (2014), 203–221.

    Article  MathSciNet  Google Scholar 

  17. L. Luks̈an and J. Vlc̈ek. Algorithm 811: NDA: algorithms for nondifferentiable optimization. ACM Transactions on Mathematical Software, 27(2) (2001), 193–213.

    Google Scholar 

  18. M.J.D. Powell. A method for nonlinear constraints in minimization problems. In R. Fletcher, editor, Optimization, pages 283–298. Academic Press, NY, 1969.

    Google Scholar 

  19. A. Rakotomamonjy. Applying alternating direction method of multipliers for constrained dictionary learning. Neurocomputing, 106 (2013), 126–136.

    Article  Google Scholar 

  20. Y. Shen and M.H. Xu. On the O(1∕t) convergence rate of Ye–Yuan’s modified alternating direction method of multipliers. Applied Mathematics and Computation, 226 (2014), 367–373.

    Article  MathSciNet  Google Scholar 

  21. J. Sun and S. Zhang. A modified alternating direction method for convex quadratically constrained quadratic semidefinite programs. European Journal of Operational Research, 207 (2010), 1210–1220.

    Article  MathSciNet  Google Scholar 

  22. K. Zhao and G. Yao. Application of the alternating direction method for an inverse monic quadratic eigenvalue problem. Applied Mathematics and Computation, 244 (2014), 32–41.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referee for valuable comments that helped to improve the quality of this paper.

This research was started when Dr. A.M. Bagirov visited Chongqing Normal University and the visit was supported by this university. The research by A.M. Bagirov and S.Taheri was also supported by Australian Research Council’s Discovery Projects funding scheme (Project No. DP190100580).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adil M. Bagirov .

Editor information

Editors and Affiliations

Appendix

Appendix

This appendix contains all test problems used in numerical experiments. In these problems the objective functions are presented as:

$$\displaystyle \begin{aligned}F(x,y) = f_1(x) + f_2(y). \end{aligned}$$

Therefore, in the description of test problems only functions f 1 and f 2 are presented and the following notations are used:

  • \((x^0,y^0) \in \mathbb {R}^n \times \mathbb {R}^m\)—starting point;

  • \((x^*,y^*) \in \mathbb {R}^n \times \mathbb {R}^m\)—known best solution;

  • f —known best value.

Problem 1

Dimension: 3 (2,1),

Component functions:

\(f_1(x)= \max \limits _{i=1,2,3} f^i(x)\),

\(f_2(y)= \max \limits _{i=4,5,6} f^i(y)\),

\(f^1(x) = x_1^2+x_2^4, f^2(x)=(2-x_1)^2+(2-x_2)^2, f^3(x)=\exp (x_2-x_1),\)

\(f^4(y) = y_1^2, f^5(y)=(2-y_1)^2, f^6(y)=\exp (-y_1),\)

Linear constraints: − x 1 − x 2 + y 1 = −0.5,

Starting point: (x 0, y 0) = (2, 2, 2)T,

Optimum point: (x , y ) = (0.8333333, 0.8333333, 1.1666667)T,

Optimum value: f  = 4.0833333.

Problem 2

Dimension: 4 (2,2),

 

Component functions:

 

\(f_1(x) = \max \{f_1^1(x), f_1^2(x), f_1^3(x)\}\),

 

\(f_2(y) = \max \{f_2^1(y), f_2^2(y), f_2^3(y)\}\),

 

\(f_1^1(x) = x_1^4 + x_2^2,~f_1^2(x) = (2-x_1)^2 + (2-x_2)^2, f_1^3(x) = 2e^{-x_1+x_2},\)

 

\(f_2^1(y) = y_1^2 - 2y_1+y_2^2 - 4y_2 +4,~f_2^2(y) = 2y_1^2 - 5y_1+y_2^2 -2y_2 +4,\)

 

\(f_2^3(y) = y_1^2 + 2y_2^2-4y_2+1,\)

 

Linear constraints:

 

x 1 + x 2 − y 1 + y 2 = 0,

 

− 3x 1 + 5x 2 − y 1 − 2y 2 = 0,

 

Starting point: (x 0, y 0) = (2, 2, 2, 2)T,

 

Optimum point: (x , y ) = (0.4964617, 0.6982659, 1.4638, 0.2690723)T,

 

Optimum value: f  = 6.1663599.

 

Problem 3

Dimension: 4 (2,2),

  

Component functions:

  

\(f_1(x) = | x_1 - 1| + 200 \max \{0, | x_1| - x_2\}\),

  

f 2(y) = 100(|y 1|− y 2),

  

Linear constraints:

  

x 1 − x 2 + 2y 1 − 3y 2 = 1,

  

− x 1 + 2x 2 − 2y 1 − y 2 = 6,

  

Starting point: (x 0, y 0) = (−1.2, 1, 1, 1)T,

  

Optimum point: (x , y ) = (5.6666667, 5.6666667, 0, −0.3333333)T,

  

Optimum value: f  = 38.

  

Problem 4

Dimension: 10 (3,7),

   

Component functions:

   

f 1(x) = 9|x 1| + |x 2| + |x 3|,

   

\(f_2(y) = \sum \limits _{i=1}^7 i|y_i|\),

   

Linear constraints:

   

x 1 + x 2 − y 1 = 1,

   

x 1 − y 2 = −10,

   

x 1 + y 3 = 10,

   

x 2 − y 4 = 1,

   

x 2 + y 5 = 10,

   

x 3 − y 6 = −10,

   

x 3 + y 7 = 1,

   

Starting point: x 0 = (1, 1, 1)T, y 0 = (2, …, 2)T,

   

Optimum point: x  = (0, 1, 0.0000001)T,

   

y  = (0, 10, 10, 0, 9, 10, 1)T,

   

Optimum value: f  = 163.

   

Problem 5

Dimension: 10 (3,7),

    

Component functions:

    

f 1(x) = |x 1 + 3x 2 + x 3| + 4|x 1 − x 2|,

    

\(f_2(y) = 10\sum \limits _{i=1}^4 \max \limits \{0,-y_i\}+\sum \limits _{i=1}^7 i|y_i|\),

    

Linear constraints:

    

− x 1 + 6x 2 + 4x 3 − y 1 = 3,

    

x 1 + x 2 + x 3 = 1,

    

x 1 + x 2 − y 5 = 0,

    

x 2 + x 3 − y 6 = 0,

    

x 1 + x 3 − y 7 = 0,

    

Starting point: x 0 = (1, −2, 3)T, y 0 = (2, …, 2)T,

    

Optimum point: x  = (0.3333408, 0.3333408, 0.3333237)T,

    

y  = (0, 0, 0, 0, 0.6666869, 0.6666638, 0.6666638)T,

    

Optimum value: f  = 13.6673059.

    

Problem 6

Dimension: 10 (3,7),

     

Component functions:

     

f 1(x) = 9 + 8x 1 + 6x 2 + 4x 3 + 2|x 1| + 2|x 2| + |x 3|,

     

+ |x 1 + x 2| + |x 1 + x 3|,

     

\(f_2(y) = 2|y_1|+|y_2|+|y_3| + 10 \sum \limits _{i=1}^4 \max \limits \{0,-y_{i+3}\}\),

     

Linear constraints:

     

x 1 + x 2 + 2x 3 + y 4 = 3,

     

4x 1 − 2x 2 − x 3 − 3y 1 + y 2 − y 3 = 6,

     

x 1 + x 2 − y 5 = 0,

     

x 2 + x 3 − y 6 = 0,

     

x 1 + x 3 − y 7 = 0,

     

Starting point: x 0 = (−1, 2, −3)T, y 0 = (1, …, 1)T,

     

Optimum point: x  = (0, 0, 0)T,

     

y  = (−2, 0, 0, 3, 0, 0, 0)T,

     

Optimum value: f  = 13.

     

Problem 7

Dimension: 12 (7,5),

      

Component functions:

      

\(f_1(x) = \sum \limits _{i=1}^6 |x_i-x_{i+1}|\),

      

\(f_2(y) = 10\sum \limits _{j=1}^5 \max \limits \{0,y_j\}\),

      

Linear constraints:

      

x 1 + x 2 + 2x 3 − y 1 = 3,

      

x 2 − x 3 + x 4 − 3y 2 = 1,

      

x 1 + x 5 − y 1 − y 3 = 1,

      

x 1 + x 6 − y 1 − y 4 = 2,

      

x 1 + x 7 − y 1 − y 5 = 1,

      

Starting point: x 0 = (1, 2, 3, 4, −5, −6, −7)T, y 0 = (1, −2, 3, −4, 5)T,

      

Optimum point: x  = (0.75, 0.75, 0.75, 0.3381465, 0.25, 0.25, 0.25)T,

      

y  = (0, 0.2206178, 0, −1, 0)T,

      

Optimum value: f(x , y ) = 0.5.

      

Problem 8

Dimension: 14 (8,6),

       

Component functions:

       

\(f_1(x) = \sum \limits _{i=1}^8 \max \limits \{0,x_i\},\)

       

f 2(y) = |y 1| + 2|y 2| + 2|y 3| + |y 4| + |y 5| + 5|y 6| + y 2 − y 5 − 4y 6,

       

Linear constraints:

       

x 1 + 2x 2 + x 3 + x 4 + y 1 = 5,

       

3x 1 + x 2 + 2x 3 − x 4 + y 2 = 4,

       

x 5 + 2x 6 + x 7 + x 8 + y 3 = 5,

       

3x 5 + x 6 + 2x 7 − x 8 + y 4 = 4,

       

x 2 + 4x 3 − y 5 = 1.5,

       

Starting point: x 0 = (1, …, 1)T, y 0 = (2, …, 2)T,

       

Optimum point:

       

x  = (0.6, 2.2, 0, 0, 0.6, 2.2, 0, 0)T,

       

y  = (0, 0, 0, 0, 0.7, 0)T,

       

Optimum value:f  = 5.6.

       

Problem 9

Dimension: 17 (10,7),

        

Component functions:

        

f 1(x) = |x 1| + |x 2| + |x 1 + x 2|− x 1 − 2x 2 + |x 3 − 10| + 4|x 4 − 5|,

        

+ |x 5 − 3| + 2|x 6 − 1| + 5|x 7| + 7|x 8 − 11| + 2|x 9 − 10| + |x 10 − 7|,

        

\(f_2(y) = |y_1|+|y_2|+10\sum \limits _{i=3}^6 \max \limits \{0,y_i-y_{i+1}\}\),

        

Linear constraints:

        

4x 1 + 5x 2 − 3x 7 + 9x 8 + 2y 1 + y 3 + y 4 = 105,

        

10x 1 − 8x 2 − 17x 7 + 2x 8 + y 2 + y 4 + 5y 5 = 0,

        

8x 1 − 2x 2 − 5x 9 + 2x 10 − 3y 5 − y 6 = −12,

        

3x 1 − 6x 2 − 12x 9 + 7x 10 − 2y 6 − y 7 = −96,

        

Starting point: x 0 = (2, …, 2)T, y 0 = (1, …, 1)T,

        

Optimum point:

        

x  = (1.4431818, 1.6136364, 10, 5, 3, 1, 0, 11, 10, 7)T,

        

y  = (0, 0, −3.9204544, −3.9204544, −3.9204544, −3.9204544, 27.4886356)T,

        

Optimum value: f  = 1.4431818.

        

Problem 10

Dimension: 30 (15,15),

         

Component functions:

         

\(f_1(x) = 15 \max \limits _{i=1,\ldots ,15} |x_i|,\)

         

\(f_2(y) = \sum \limits _{i=1}^{15} |y_i|\),

         

Linear constraints: x i + 2x i+1 − 3x i+2 − y i − 2y i+2 = i − 1, i = 1, …, 13,

         

Starting point:

         

x 0 = (x 1, …, x 15)T, x i = i, i ≤ 7, x i = −i, i > 7,

         

y 0 = (y 1, …, y 15)T, y i = −i, i ≤ 7, y i = i, i > 7,

         

Optimum point:

         

x  = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T,

         

y  = (0, 0, 0, −0.5, −1, −1.25, −1.5, −1.88, −2.25, −2.56, −2.86,

         

− 3.22, −3.56, −3.89, −4.22)T,

         

Optimum value: f  = 28.703125.

         

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bagirov, A.M., Taheri, S., Bai, F., Wu, Z. (2019). An Approximate ADMM for Solving Linearly Constrained Nonsmooth Optimization Problems with Two Blocks of Variables. In: Hosseini, S., Mordukhovich, B., Uschmajew, A. (eds) Nonsmooth Optimization and Its Applications. International Series of Numerical Mathematics, vol 170. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-11370-4_2

Download citation

Publish with us

Policies and ethics