Skip to main content

Atherogenesis: Estrogen Induction of Polysialylated nCAM (PSA-nCAM) Blocks Monocyte Capture by Vascular Endothelial Cells

  • Chapter
  • First Online:
Sex Steroids' Effects on Brain, Heart and Vessels

Part of the book series: ISGE Series ((ISGE))

  • 670 Accesses

Abstract

Atherosclerosis begins with the formation of subendothelial vascular atheromas. Atheroma formation requires the capture of monocytes by the vessel wall endothelial cells. To arrest passing leukocytes, the vascular endothelium deploys cell surface neural cell molecule (nCAM) to form polymers (tethers) with nCAM on the surface of passing monocytes. The arrested monocytes are then bound by cadherins, adhere to the endothelial surface, and migrate into the subendothelial stroma. They then undergo transformation to foam cells and are incorporated in atheroma plaque. The formation of nCAM polymers is dependent on electrostatic binding of extracellular domains of nCAM molecules. We consider the capture of monocytes to be a nexus in atherogenesis, in which the monocytes that are required to form plaque are furnished to the plaque-forming milieu of the vessels: no monocytes, no plaque. Sialylation of nCAM renders it unable to form nCAM polymers, breaking the chain at this vulnerable nexus between circulating leukocytes and endothelial binding/penetration.

Estrogen is anti-atherogenic. We showed that estradiol induces the expression of nCAM sialylases in vascular endothelium and proposed that estrogen-induced sialylation of nCAM inhibits the capture of leukocytes from the blood. To test this hypothesis, we employed in vitro culture of cardiovascular endothelial cells from women’s and men’s coronary vessels. Hormone-treated monolayers of endothelial cells were seeded with green fluorescence-labeled human monocytes; after suitable incubation the free monocytes were washed away, and the number of monocytes captured by sex steroid-treated endothelial cells vs. untreated cells was assessed. Significantly fewer monocytes were captured by estradiol-pretreated human endothelial cells than by control vehicle controls. The estradiol effect was blocked by co-pretreatment with an antagonist SERM. We obtained similar results regarding nCAM sialylation and monocyte capture with other sex steroids: testosterone, dihydrotestosterone, and dehydroepiandrosterone (DHEA). Preliminary studies indicate that this was related to interaction of these steroids or their metabolites with estrogen receptors, which may explain their estrogen-like action. This is presently under study.

We conclude that one of the anti-atherogenic actions of estrogen is to induce the polysialylation of nCAM, inhibiting tethering of intravascular monocytes to the vascular endothelium. This could interfere with a key nexus for the beginning of atherogenesis and atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mendelsohn ME, Karas RH. Molecular and cellular basis of cardiovascular gender differences. Science. 2005;308(5728):1583–7.

    Article  CAS  Google Scholar 

  2. Tunstall-Pedoe H. Myth and paradox of coronary risk and the menopause. Lancet. 1998;351:1425–7.

    Article  CAS  Google Scholar 

  3. Colditz GA, Willet WC, Stampfer MJ, Rosner B, Speizer FE, Hennekens CH. Menopause and the risk of coronary heart disease in women. N Engl J Med. 1987;316:1105–10.

    Article  CAS  Google Scholar 

  4. Salpeter SR, Cheng J, Thabane L, Buckley NS, Salpeter EE. Bayesian meta-analysis of hormone therapy and mortality in younger postmenopausal women. Am J Med. 2009;122(11):1016–22.

    Article  CAS  Google Scholar 

  5. Kalantaridou SN, Naka KK, Papanikolaou E, Kazakos N, Kravariti M, Calis KA, Paraskevaidis EA, Sideris DA, Tsatsoulis A, Chrousos GP, Michalis LK. Impaired endothelial function in young women with premature ovarian failure: normalization with hormone therapy. J Clin Endocrinol Metab. 2004;89:3907–13.

    Article  CAS  Google Scholar 

  6. Perez-Lopez FR, Chedraui P, Gilbert JJ, Perez-Roncero G. Cardiovascular risk in menopausal women and prevalent related co-morbid conditions: facing the post-Women’s health initiative era. Fertil Steril. 2009;92:1171–86.

    Article  CAS  Google Scholar 

  7. Stevenson JC, Crook D, Godsland IF. Influence of age and menopause on serum lipids and lipoproteins in healthy women. Atherosclerosis. 1993;98:83–90.

    Article  CAS  Google Scholar 

  8. Rosenberg L, Hennekens CH, Rosner B, Belanger C, Rothman KJ, Speizer FE. Early menopause and the risk of myocardial infarction. Am J Obstet Gynecol. 1981;139(1):47–51.

    Article  CAS  Google Scholar 

  9. Grodstein F, Manson JE, Colditz GA, Willett WC, Stampfer MJ. A prospective, observational study of postmenopausal hormone therapy and primary prevention of cardiovascular disease. Ann Intern Med. 2000;133(12):933–41.

    Article  CAS  Google Scholar 

  10. Manson JE. Postmenopausal hormone therapy and atherosclerotic disease. Am Heart J. 1994;128(6 Pt 2):1337–43.

    Article  CAS  Google Scholar 

  11. Hodis HN, Mack WJ, Shoupe D, et al. Testing the menopausal hormone therapy timing hypothesis: the Early vs Late Intervention Trial with Estradiol. Circulation. 2014;130:A13283.

    Google Scholar 

  12. Manson JE, Allison MA, Rossouw JE, Carr JJ, Langer RD, Hsia J, Kuller LH, Cochrane BB, Hunt JR, Ludlam SE, Pettinger MB, Gass M, Margolis KL, Nathan L, Ockene JK, Prentice RL, Robbins J, Stefanick ML. Estrogen therapy and coronary artery calcification. N Engl J Med. 2007;256:2591–602.

    Article  Google Scholar 

  13. Poornima IG, Mackey RH, Allison MA, Manson JE, Carr JJ, LaMonte MJ, Chang Y, Kuller LH, WHI and WHI‐CAC Study Investigators. Coronary artery calcification (CAC) and post-trial cardiovascular events and mortality within the women’s health initiative (WHI) estrogen-alone trial. J Am Heart Assoc. 2017;6(11):e006887.

    Article  Google Scholar 

  14. Ge QS, Tian QJ, Tseng H, Naftolin F. Development of low-dose reproductive hormone therapies in China. Gynecol Endocrinol. 2006;22:636–45.

    Article  CAS  Google Scholar 

  15. Clarkson TB, Meléndez GC, Appt SE. Timing hypothesis for postmenopausal hormone therapy: its origin, current status, and future. Menopause. 2013;20:342–53.

    Article  Google Scholar 

  16. Choi S, Steinberg E, Lee H, Naftalin F. The Timing Hypothesis remains a valid explanation of different cardioprotective effects of menopausal hormone treatment. Menopause. 2011;18(2):230–6.

    PubMed  Google Scholar 

  17. Harman SM, Black DM, Naftolin F, et al. Arterial imaging outcomes and cardiovascular risk factors in recently menopausal women in the kronos early estrogen prevention study (KEEPS): a randomized controlled trial. Ann Intern Med. 2014;161(4):249–60.

    Article  Google Scholar 

  18. Diano S, Horvath TL, Mor G, Register T, Adams M, Harada N, Naftolin F. Aromatase and estrogen receptor immunoreactivity in the coronary arteries of monkeys and human subjects. Menopause. 1999;6(1):21–8.

    Article  CAS  Google Scholar 

  19. Bechmann I, Goldmann J, Kovac AD, Kwidzinski E, Simbürger E, Naftolin F, Dirnagl U, Nitsch R, Priller J. Circulating monocytic cells infiltrate layers of anterograde axonal degeneration where they transform into microglia. FASEB J. 2005;19(6):647–9.

    Article  CAS  Google Scholar 

  20. Mor G, Nilsen J, Horvath T, Bechmann I, Brown S, Garcia-Segura LM, Naftolin F. Estrogen and microglia: a regulatory system that affects the brain. J Neurobiol. 1999;40(4):484–96.

    Article  CAS  Google Scholar 

  21. Naftolin F, Mehr H, Fadiel A. Sex steroids block the initiation of atherosclerosis. Reprod Sci. 2016;23(12):1620–5.

    Article  CAS  Google Scholar 

  22. Berliner JA, Territo MC, Sevanian A, et al. Minimally modified low density lipoprotein stimulates monocyte endothelial interactions. J Clin Invest. 1990;85:1260–6.

    Article  CAS  Google Scholar 

  23. Berliner JA, Navab M, Fogelman AM, et al. Atherosclerosis: basic mechanisms. Oxidation, inflammation, and genetics. Circulation. 1995;91(9):2488–96.

    Article  CAS  Google Scholar 

  24. Dong ZM, Chapman SM, Brown AA, Frenette PS, Hynes RO, Wagner DD. The combined role of P- and E-selectins in atherosclerosis. J Clin Invest. 1998;102:145–52.

    Article  CAS  Google Scholar 

  25. Galkina E, Ley E. Vascular adhesion molecules in atherosclerosis. Atherioscler Thromb Vas Biol. 2007;27(11):2292–301.

    Article  CAS  Google Scholar 

  26. Collins RG, Velji R, Guevara NV, Hicks MJ, Chan L, Beaudet AL. P-Selectin or intercellular adhesion molecule (ICAM)-1 deficiency substantially protects against atherosclerosis in apolipoprotein E- deficient mice. J Exp Med. 2000;191:189–94.

    Article  CAS  Google Scholar 

  27. Garcia M, Miller VM, Gulati M, Hayes SN, Manson JE, Wenger NK, et al. Focused cardiovascular care for women: the need and role in clinical practice. Mayo Clin Proc. 2016;91:226–40.

    Article  Google Scholar 

  28. Gascon E, Vutskits L, Kiss JZ. Polysialic acid-neural cell adhesion molecule in brain plasticity: from synapses to integration of new neurons. Brain Res Rev. 2007;56:101–18.

    Article  CAS  Google Scholar 

  29. Rougon G. Structure, metabolism and cell biology of polysialic acids. Eur J Cell Biol. 1993;61(2):197–207.

    CAS  PubMed  Google Scholar 

  30. Tan O, Fadiel A, Chang A, Demir N, Jeffrey R, Horvath T, Garcia-Segura LM, Naftolin F. Estrogens regulate posttranslational modification of neural cell adhesion molecule during the estrogen-induced gonadotropin surge. Endocrinology. 2009;150(6):2783–90.

    Article  CAS  Google Scholar 

  31. Park H, Pagan L, Tan O, Fadiel A, Demir N, Huang K, Mittal K, Naftolin F. Estradiol regulates expression of polysialylated neural cell adhesion molecule by human vascular endothelial cells. Reprod Sci. 2010;17:1090–8.

    Article  CAS  Google Scholar 

  32. Curatola AM, Huang K, Naftolin F. Dehydroepiandrosterone (DHEA) inhibition of monocyte binding by vascular endothelium is associated with sialylation of neural cell adhesion molecule. Reprod Sci. 2012;19:86–91.

    Article  CAS  Google Scholar 

  33. Horst HJ, Dennis M, Kaufmann J, Voigt KD. In vivo uptake and metabolism of 3-h-5alpha-androstane-3alpha,17beta-diol and of 3-h-5alpha-androstane-3beta,17beta-diol by human prostatic hypertrophy. Acta Endocrinol. 1975;79(2):394–402.

    Article  CAS  Google Scholar 

  34. Garcia M, Greene G, Rochefort H, Jensen EV. Effect of antibodies to estrogen receptor on the binding of 3H-labeled antiestrogens and androstanediol in the uterus. Endocrinology. 1982;110(4):1355–61.

    Article  CAS  Google Scholar 

  35. Kuiper GG, Carlsson B, Grandien K, et al. Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors. Endocrinology. 1997;138:863–70.

    Article  CAS  Google Scholar 

  36. Frye CA, Ryan A, Rhodes M. Antiseizure effects of 3 alpha-androstanediol and/or 17beta-estradiol may involve actions at estrogen receptor beta. Epilepsy Behav. 2009;16(3):418–22.

    Article  Google Scholar 

  37. Torres-Estay V, Carreño DV, Fuenzalida P, Watts A, San Francisco IF, Montecinos VP, Sotomayor PC, Ebos J, Smith GJ, Godoy AS. Androgens modulate male-derived endothelial cell homeostasis using androgen receptor-dependent and receptor-independent mechanisms. Angiogenesis. 2017;20(1):25–38.

    Article  CAS  Google Scholar 

  38. Cardenas C, Alvero AB, Yun BS, Mor G. Redefining the origin and evolution of ovarian cancer: a hormonal connection. Endocr Relat Cancer. 2016;23(9):R411–22.

    Article  Google Scholar 

  39. van Gils JM, Zwaginga JJ, Hordijk PL. Molecular and functional interactions among monocytes, platelets, and endothelial cells and their relevance for cardiovascular diseases. J Leukoc Biol. 2009;85(2):195–204.

    Article  Google Scholar 

Download references

Acknowledgments

Support—NIH HL100769. Helpful conversations with Drs. Gil Mor and Andrei Kindzelski are gratefully acknowledged.

Support NIH HL 796100

Conflicts: None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederick Naftolin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 International Society of Gynecological Endocrinology

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Naftolin, F. (2019). Atherogenesis: Estrogen Induction of Polysialylated nCAM (PSA-nCAM) Blocks Monocyte Capture by Vascular Endothelial Cells. In: Brinton, R., Genazzani, A., Simoncini, T., Stevenson, J. (eds) Sex Steroids' Effects on Brain, Heart and Vessels. ISGE Series. Springer, Cham. https://doi.org/10.1007/978-3-030-11355-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11355-1_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11354-4

  • Online ISBN: 978-3-030-11355-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics