Skip to main content

Obstetric History and Cardiovascular Disease (CVD) Risk

  • Chapter
  • First Online:
Book cover Sex Steroids' Effects on Brain, Heart and Vessels

Part of the book series: ISGE Series ((ISGE))

  • 693 Accesses

Abstract

During normal pregnancy, several metabolic and hemodynamic alterations occur in order to ensure normal fetal development. A pregnant woman’s failure to overcome these alterations may result in hypertensive pregnancy disorders (gestational hypertension, preeclampsia/eclampsia) or gestational diabetes mellitus. Recent studies have shown that these complications not only affect the pregnancy outcome but are also related to vascular dysfunction that persists postpartum. Moreover, there is an established association between hypertensive pregnancy disorders, gestational diabetes mellitus, and subsequent risk of cardiovascular disease (CVD) later in life. Despite the numerous data that support this association, most obstetricians and primary healthcare physicians dot not provide appropriate postpartum follow-up and counseling to women with increased risk of CVD. Lifestyle modifications in association with close follow-up applied early after labor in women with complicated pregnancies may provide early diagnosis and prevention of future cardiovascular events. Therefore, it is essential for the physicians to understand the importance of obstetric history as a predictive factor of CVD and incorporate it in the daily practice in order to optimize the management of women with increased CVD risk and subsequently reduce CVD rates in women.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. WHO. Cardiovascular disease key facts. Geneva: WHO. www.who.int/mediacentre/factsheets/fs317/en/. Accessed 27 Feb 2018.

  2. Townsend N, et al. Cardiovascular disease in Europe: epidemiological update 2016. Eur Heart J. 2016;37(42):3232–45.

    Article  Google Scholar 

  3. Appelman Y, et al. Sex differences in cardiovascular risk factors and disease prevention. Atherosclerosis. 2015;241(1):211–8.

    Article  CAS  Google Scholar 

  4. Park K, et al. Adverse pregnancy conditions, infertility, and future cardiovascular risk: implications for mother and child. Cardiovasc Drugs Ther. 2015;29(4):391–401.

    Article  Google Scholar 

  5. Mosca L, et al. Effectiveness-based guidelines for the prevention of cardiovascular disease in women—2011 update: a guideline from the american heart association. Circulation. 2011;123(11):1243–62.

    Article  Google Scholar 

  6. Gongora MC, Wenger NK. Cardiovascular complications of pregnancy. Int J Mol Sci. 2015;16(10):23905–28.

    Article  Google Scholar 

  7. Lind JM, Hennessy A, McLean M. Cardiovascular disease in women: the significance of hypertension and gestational diabetes during pregnancy. Curr Opin Cardiol. 2014;29(5):447–53.

    Article  Google Scholar 

  8. Smith GN. The maternal health clinic: improving women’s cardiovascular health. Semin Perinatol. 2015;39(4):316–9.

    Article  Google Scholar 

  9. Thornburg KL, et al. Hemodynamic changes in pregnancy. Semin Perinatol. 2000;24(1):11–4.

    Article  CAS  Google Scholar 

  10. Bernstein IM, Ziegler W, Badger GJ. Plasma volume expansion in early pregnancy. Obstet Gynecol. 2001;97(5 Pt 1):669–72.

    CAS  PubMed  Google Scholar 

  11. Ouzounian JG, Elkayam U. Physiologic changes during normal pregnancy and delivery. Cardiol Clin. 2012;30(3):317–29.

    Article  Google Scholar 

  12. Creasy RK, Resnik R. Maternal-fetal medicine. Philadelphia, PA: Saunders; 1999.

    Google Scholar 

  13. Tiralongo GM, et al. Assessment of total vascular resistance and total body water in normotensive women during the first trimester of pregnancy. A key for the prevention of preeclampsia. Pregnancy Hypertens. 2015;5(2):193–7.

    Article  CAS  Google Scholar 

  14. Ayala DE, et al. Blood pressure variability during gestation in healthy and complicated pregnancies. Hypertension. 1997;30(3 Pt 2):611–8.

    Article  CAS  Google Scholar 

  15. Grindheim G, et al. Changes in blood pressure during healthy pregnancy: a longitudinal cohort study. J Hypertens. 2012;30(2):342–50.

    Article  CAS  Google Scholar 

  16. James AH. Pregnancy-associated thrombosis. Hematology Am Soc Hematol Educ Program. 2009;2009:277.

    Article  Google Scholar 

  17. DeStephano CC, et al. Diagnosis and management of iliac vein thrombosis in pregnancy resulting from May-Thurner syndrome. J Perinatol. 2014;34(7):566–8.

    Article  CAS  Google Scholar 

  18. Butte NF. Carbohydrate and lipid metabolism in pregnancy: normal compared with gestational diabetes mellitus. Am J Clin Nutr. 2000;71(5 Suppl):1256S–61S.

    Article  CAS  Google Scholar 

  19. Mammaro A, et al. Hypertensive disorders of pregnancy. J Prenat Med. 2009;3(1):1–5.

    PubMed  PubMed Central  Google Scholar 

  20. National High Blood Pressure Education Program Working Group on High Blood Pressure in Pregnancy. Report of the National High Blood Pressure Education Program Working Group on High Blood Pressure in Pregnancy. Am J Obstet Gynecol. 2000;183(1):S1–S22.

    Article  Google Scholar 

  21. Umesawa M, Kobashi G. Epidemiology of hypertensive disorders in pregnancy: prevalence, risk factors, predictors and prognosis. Hypertens Res. 2017;40(3):213–20.

    Article  Google Scholar 

  22. Groenhof TKJ, et al. Preventing cardiovascular disease after hypertensive disorders of pregnancy: searching for the how and when. Eur J Prev Cardiol. 2017;24(16):1735–45.

    Article  Google Scholar 

  23. Timpka S, et al. Lifestyle in progression from hypertensive disorders of pregnancy to chronic hypertension in Nurses’ Health Study II: observational cohort study. BMJ. 2017;358:j3024.

    Article  Google Scholar 

  24. Wang L, et al. Association between hypertensive disorders of pregnancy and the risk of postpartum hypertension: a cohort study in women with gestational diabetes. J Hum Hypertens. 2017;31(11):725–30.

    Article  CAS  Google Scholar 

  25. Behrens I, et al. Association between hypertensive disorders of pregnancy and later risk of cardiomyopathy. JAMA. 2016;315(10):1026–33.

    Article  CAS  Google Scholar 

  26. Veerbeek JH, et al. Cardiovascular disease risk factors after early-onset preeclampsia, late-onset preeclampsia, and pregnancy-induced hypertension. Hypertension. 2015;65(3):600–6.

    Article  CAS  Google Scholar 

  27. Andersgaard AB, et al. Recurrence and long-term maternal health risks of hypertensive disorders of pregnancy: a population-based study. Am J Obstet Gynecol. 2012;206(2):6.

    Article  Google Scholar 

  28. Kestenbaum B, et al. Cardiovascular and thromboembolic events following hypertensive pregnancy. Am J Kidney Dis. 2003;42(5):982–9.

    Article  Google Scholar 

  29. Wikstrom AK, et al. The risk of maternal ischaemic heart disease after gestational hypertensive disease. BJOG. 2005;112(11):1486–91.

    Article  Google Scholar 

  30. Tooher J, et al. All hypertensive disorders of pregnancy increase the risk of future cardiovascular disease. Hypertension. 2017;70(4):798–803.

    Article  CAS  Google Scholar 

  31. Alsnes IV, et al. A population-based study of associations between preeclampsia and later cardiovascular risk factors. Am J Obstet Gynecol. 2014;211(6):17.

    Article  Google Scholar 

  32. Drost JT, et al. Cardiovascular risk factors in women 10 years post early preeclampsia: the Preeclampsia Risk EValuation in FEMales study (PREVFEM). Eur J Prev Cardiol. 2012;19(5):1138–44.

    Article  Google Scholar 

  33. Sibai BM, el-Nazer A, Gonzalez-Ruiz A. Severe preeclampsia-eclampsia in young primigravid women: subsequent pregnancy outcome and remote prognosis. Am J Obstet Gynecol. 1986;155(5):1011–6.

    Article  CAS  Google Scholar 

  34. Bokslag A, et al. Effect of early-onset preeclampsia on cardiovascular risk in the fifth decade of life. Am J Obstet Gynecol. 2017;216(5):14.

    Article  Google Scholar 

  35. Brown MC, et al. Cardiovascular disease risk in women with pre-eclampsia: systematic review and meta-analysis. Eur J Epidemiol. 2013;28(1):1–19.

    Article  Google Scholar 

  36. Wu P, et al. Preeclampsia and future cardiovascular health: a systematic review and meta-analysis. Circ Cardiovasc Qual Outcomes. 2017;10(2):22.

    Article  Google Scholar 

  37. Zoet GA, et al. Cardiovascular RiskprofilE – IMaging and gender-specific disOrders (CREw-IMAGO): rationale and design of a multicenter cohort study. BMC Womens Health. 2017;17:60.

    Article  Google Scholar 

  38. Hauspurg A, et al. Adverse pregnancy outcomes and future maternal cardiovascular disease. Clin Cardiol. 2018;15(10):22887.

    Google Scholar 

  39. Egan AM, et al. Epidemiology of gestational diabetes mellitus according to IADPSG/WHO 2013 criteria among obese pregnant women in Europe. Diabetologia. 2017;60(10):1913–21.

    Article  Google Scholar 

  40. Buchanan TA, Xiang AH, Page KA. Gestational diabetes mellitus: risks and management during and after pregnancy. Nat Rev Endocrinol. 2012;8(11):639–49.

    Article  CAS  Google Scholar 

  41. Li LJ, et al. Effect of gestational diabetes and hypertensive disorders of pregnancy on postpartum cardiometabolic risk. Endocr Connect. 2018;14:17–0359.

    Google Scholar 

  42. Retnakaran R, Shah BR. Mild glucose intolerance in pregnancy and risk of cardiovascular disease: a population-based cohort study. CMAJ. 2009;181(6–7):371–6.

    Article  Google Scholar 

  43. Tobias DK, et al. Association of history of gestational diabetes with long-term cardiovascular disease risk in a large prospective cohort of US women. JAMA Intern Med. 2017;177(12):1735–42.

    Article  Google Scholar 

  44. Goueslard K, et al. Early cardiovascular events in women with a history of gestational diabetes mellitus. Cardiovasc Diabetol. 2016;15(15):016–0338.

    Google Scholar 

  45. Shah BR, Retnakaran R, Booth GL. Increased risk of cardiovascular disease in young women following gestational diabetes mellitus. Diabetes Care. 2008;31(8):1668–9.

    Article  Google Scholar 

  46. Li J-W, et al. Association of gestational diabetes mellitus (GDM) with subclinical atherosclerosis: a systemic review and meta-analysis. BMC Cardiovasc Disord. 2014;14:132.

    Article  Google Scholar 

  47. Li JW, et al. Association of gestational diabetes mellitus (GDM) with subclinical atherosclerosis: a systemic review and meta-analysis. BMC Cardiovasc Disord. 2014;14(132):1471–2261.

    Google Scholar 

  48. Caliskan M, et al. Does gestational diabetes history increase epicardial fat and carotid intima media thickness? Echocardiography. 2014;31(10):1182–7.

    Article  Google Scholar 

  49. Gunderson EP, et al. History of gestational diabetes mellitus and future risk of atherosclerosis in mid-life: the coronary artery risk development in young adults study. J Am Heart Assoc. 2014;3(2):000490.

    Article  Google Scholar 

  50. Lekva T, et al. Aortic stiffness and cardiovascular risk in women with previous gestational diabetes mellitus. PLoS One. 2015;10(8):e0136892.

    Article  Google Scholar 

  51. Vilmi-Kerala T, et al. Subclinical inflammation associated with prolonged TIMP-1 upregulation and arterial stiffness after gestational diabetes mellitus: a hospital-based cohort study. Cardiovasc Diabetol. 2017;16(1):017–0530.

    Article  Google Scholar 

  52. Tam WH, et al. PP103. Arterial stiffness in women with previous GDM – a follow up of Chinese HAPO study cohort. Pregnancy Hypertens. 2012;2(3):13.

    Article  Google Scholar 

  53. Vural M, et al. Evaluation of the future atherosclerotic heart disease with oxidative stress and carotid artery intima media thickness in gestational diabetes mellitus. Endocr Res. 2012;37(3):145–53.

    Article  CAS  Google Scholar 

  54. Salmi AA, et al. Arterial stiffness, inflammatory and pro-atherogenic markers in gestational diabetes mellitus. Vasa. 2012;41(2):96–104.

    Article  Google Scholar 

  55. Lobo TF, et al. Impaired Treg and NK cells profile in overweight women with gestational diabetes mellitus. Am J Reprod Immunol. 2018;79(3):5.

    Article  Google Scholar 

  56. Perrine CG, et al. Lactation and maternal cardio-metabolic health. Annu Rev Nutr. 2016;36:627–45.

    Article  CAS  Google Scholar 

  57. Ram KT, et al. Duration of lactation is associated with lower prevalence of the metabolic syndrome in midlife—SWAN, the study of women’s health across the nation. Am J Obstet Gynecol. 2008;198(3):268.e1–6.

    Article  Google Scholar 

  58. Schwarz EB, et al. Duration of lactation and risk factors for maternal cardiovascular disease. Obstet Gynecol. 2009;113(5):974–82.

    Article  Google Scholar 

  59. Gunderson EP, et al. Lactation duration and midlife atherosclerosis. Obstet Gynecol. 2015;126(2):381–90.

    Article  CAS  Google Scholar 

  60. McClure CK, et al. Lactation and maternal subclinical cardiovascular disease among premenopausal women. Am J Obstet Gynecol. 2012;207(1):2.

    Article  Google Scholar 

  61. Schwarz EB, et al. Lactation and maternal measures of subclinical cardiovascular disease. Obstet Gynecol. 2010;115(1):41–8.

    Article  Google Scholar 

  62. Groer MW, et al. Breastfeeding status and maternal cardiovascular variables across the postpartum. J Women’s Health. 2013;22(5):453–9.

    Article  Google Scholar 

  63. Park S, Choi NK. Breastfeeding and maternal hypertension. Am J Hypertens. 2018;25:4825441.

    Google Scholar 

  64. Lupton SJ, et al. Association between parity and breastfeeding with maternal high blood pressure. Am J Obstet Gynecol. 2013;208(6):7.

    Article  Google Scholar 

  65. Peters SA, et al. Parity, breastfeeding and risk of coronary heart disease: a pan-European case-cohort study. Eur J Prev Cardiol. 2016;23(16):1755–65.

    Article  Google Scholar 

  66. Peters SAE, et al. Breastfeeding and the risk of maternal cardiovascular disease: a prospective study of 300 000 Chinese women. J Am Heart Assoc. 2017;6(6):006081.

    Article  Google Scholar 

  67. Natland Fagerhaug T, et al. A prospective population-based cohort study of lactation and cardiovascular disease mortality: the HUNT study. BMC Public Health. 2013;13(1070):1471–2458.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene Lambrinoudaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 International Society of Gynecological Endocrinology

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Armeni, E., Karopoulou, E., Lambrinoudaki, I. (2019). Obstetric History and Cardiovascular Disease (CVD) Risk. In: Brinton, R., Genazzani, A., Simoncini, T., Stevenson, J. (eds) Sex Steroids' Effects on Brain, Heart and Vessels. ISGE Series. Springer, Cham. https://doi.org/10.1007/978-3-030-11355-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11355-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11354-4

  • Online ISBN: 978-3-030-11355-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics