Skip to main content

Congenital Hypogonadotropic Hypogonadism (Isolated GnRH Deficiency)

  • Chapter
  • First Online:
Pituitary Disorders of Childhood

Part of the book series: Contemporary Endocrinology ((COE))

Abstract

Congenital hypogonadotropic hypogonadism (CHH) is a rare genetic disorder caused by the absence of GnRH secretion from the hypothalamus or defective GnRH action in the pituitary. CHH patients present with absent or incomplete sexual maturation and infertility, with low serum sex steroids in the context of low/normal gonadotropins. CHH can occur either with normal sense of smell or with lack of sense of smell (i.e., anosmia). The co-occurrence of CHH and anosmia is termed as Kallmann syndrome (KS). Mutations in more than 25 genes are identified in CHH patients, either alone or in combination. Hormonal therapy can induce secondary sexual characteristics, increase bone mass, and restore fertility. In this chapter, we will discuss the pathogenesis, clinical manifestation, diagnosis, and treatment of CHH.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fromantin M, Gineste J, Didier A, Rouvier J. Impuberism and hypogonadism at induction into military service. Statistical study. Probl Actuels Endocrinol Nutr. 1973;16:179–99.

    CAS  PubMed  Google Scholar 

  2. Seminara SB, Hayes FJ, Crowley WF Jr. Gonadotropin-releasing hormone deficiency in the human (idiopathic hypogonadotropic hypogonadism and Kallmann’s syndrome): pathophysiological and genetic considerations. Endocr Rev. 1998;19(5):521–39.

    CAS  PubMed  Google Scholar 

  3. Melmed S, Polonsky KS, Reed Larsen P, Kronenberg HM. Williams textbook of endocrinology. 13th ed. Philadelphia: Elsevier; 2016.

    Google Scholar 

  4. Sisk CL, Foster DL. The neural basis of puberty and adolescence. Nat Neurosci. 2004;7(10):1040–7.

    Article  CAS  PubMed  Google Scholar 

  5. Boehm U, Bouloux PM, Dattani MT, de Roux N, Dode C, Dunkel L, et al. Expert consensus document: European Consensus Statement on congenital hypogonadotropic hypogonadism-pathogenesis, diagnosis and treatment. Nat Rev Endocrinol. 2015;11(9):547–64.

    Article  PubMed  Google Scholar 

  6. Polin RA, Abman SH. Fetal and neonatal physiology. 4th ed. Philadelphia: Elsevier; 2011.

    Google Scholar 

  7. Casoni F, Malone SA, Belle M, Luzzati F, Collier F, Allet C, et al. Development of the neurons controlling fertility in humans: new insights from 3D imaging and transparent fetal brains. Development. 2016;143(21):3969–81.

    Article  CAS  PubMed  Google Scholar 

  8. Bouvattier C, Maione L, Bouligand J, Dode C, Guiochon-Mantel A, Young J. Neonatal gonadotropin therapy in male congenital hypogonadotropic hypogonadism. Nat Rev Endocrinol. 2012;8(3):172–82.

    Article  CAS  Google Scholar 

  9. Chung WC, Tsai PS. Role of fibroblast growth factor signaling in gonadotropin-releasing hormone neuronal system development. Front Horm Res. 2010;39:37–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wierman ME, Kiseljak-Vassiliades K, Tobet S. Gonadotropin-releasing hormone (GnRH) neuron migration: initiation, maintenance and cessation as critical steps to ensure normal reproductive function. Front Neuroendocrinol. 2011;32(1):43–52.

    Article  CAS  PubMed  Google Scholar 

  11. Cottrell EC, Campbell RE, Han SK, Herbison AE. Postnatal remodeling of dendritic structure and spine density in gonadotropin-releasing hormone neurons. Endocrinology. 2006;147(8):3652–61.

    Article  CAS  PubMed  Google Scholar 

  12. Schwanzel-Fukuda M, Bick D, Pfaff DW. Luteinizing hormone-releasing hormone (LHRH)-expressing cells do not migrate normally in an inherited hypogonadal (Kallmann) syndrome. Brain Res Mol Brain Res. 1989;6(4):311–26.

    Article  CAS  PubMed  Google Scholar 

  13. Grumbach MM. A window of opportunity: the diagnosis of gonadotropin deficiency in the male infant. J Clin Endocrinol Metab. 2005;90(5):3122–7.

    Article  CAS  PubMed  Google Scholar 

  14. Boyar RM, Wu RHK, Kapen S, Hellman L, Weitzman ED, Finkelstein JW. Clinical and laboratory heterogeneity in idiopathic hypogonadotropic hypogonadism. J Clin Endocrinol Metab. 1976;43(6):1268–75.

    Article  CAS  PubMed  Google Scholar 

  15. Kumar P, Sharma A. Gonadotropin-releasing hormone analogs: understanding advantages and limitations. J Hum Reprod Sci. 2014;7(3):170–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Clarke IJ, Cummins JT. The temporal relationship between gonadotropin releasing hormone (GnRH) and luteinizing hormone (LH) secretion in ovariectomized ewes. Endocrinology. 1982;111(5):1737–9.

    Article  CAS  PubMed  Google Scholar 

  17. Pitteloud N, Hayes FJ, Boepple PA, DeCruz S, Seminara SB, MacLaughlin DT, et al. The role of prior pubertal development, biochemical markers of testicular maturation, and genetics in elucidating the phenotypic heterogeneity of idiopathic hypogonadotropic hypogonadism. J Clin Endocrinol Metab. 2002;87(1):152–60.

    Article  CAS  PubMed  Google Scholar 

  18. Raivio T, Falardeau J, Dwyer A, Quinton R, Hayes FJ, Hughes VA, et al. Reversal of idiopathic hypogonadotropic hypogonadism. N Engl J Med. 2007;357(9):863–73.

    Article  CAS  PubMed  Google Scholar 

  19. Sidhoum VF, Chan YM, Lippincott MF, Balasubramanian R, Quinton R, Plummer L, et al. Reversal and relapse of hypogonadotropic hypogonadism: resilience and fragility of the reproductive neuroendocrine system. J Clin Endocrinol Metab. 2014;99(3):861–70.

    Article  CAS  PubMed  Google Scholar 

  20. Waldstreicher J, Seminara SB, Jameson JL, Geyer A, Nachtigall LB, Boepple PA, et al. The genetic and clinical heterogeneity of gonadotropin-releasing hormone deficiency in the human. J Clin Endocrinol Metab. 1996;81(12):4388–95.

    CAS  PubMed  Google Scholar 

  21. Quinton R, Duke VM, Robertson A, Kirk JMW, Matfin G, De Zoysa PA, et al. Idiopathic gonadotrophin deficiency: genetic questions addressed through phenotypic characterization. Clin Endocrinol. 2001;55(2):163–74.

    Article  CAS  Google Scholar 

  22. Lewkowitz-Shpuntoff HM, Hughes VA, Plummer L, Au MG, Doty RL, Seminara SB, et al. Olfactory phenotypic spectrum in idiopathic hypogonadotropic hypogonadism: pathophysiological and genetic implications. J Clin Endocrinol Metab. 2012;97(1):E136–44.

    Article  CAS  PubMed  Google Scholar 

  23. Sedlmeyer IL, Palmert MR. Delayed puberty: analysis of a large case series from an academic center. J Clin Endocrinol Metab. 2002;87(4):1613–20.

    Article  CAS  PubMed  Google Scholar 

  24. Palmert MR, Dunkel L. Clinical practice. Delayed puberty. N Engl J Med. 2012;366(5):443–53.

    Article  CAS  PubMed  Google Scholar 

  25. Harrington J, Palmert MR. Clinical review: distinguishing constitutional delay of growth and puberty from isolated hypogonadotropic hypogonadism: critical appraisal of available diagnostic tests. J Clin Endocrinol Metab. 2012;97(9):3056–67.

    Article  CAS  PubMed  Google Scholar 

  26. Miraoui H, Dwyer AA, Sykiotis GP, Plummer L, Chung W, Feng B, et al. Mutations in FGF17, IL17RD, DUSP6, SPRY4, and FLRT3 are identified in individuals with congenital hypogonadotropic hypogonadism. Am J Hum Genet. 2013;92(5):725–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Soussi-Yanicostas N, de Castro F, Julliard AK, Perfettini I, Chedotal A, Petit C. Anosmin-1, defective in the X-linked form of Kallmann syndrome, promotes axonal branch formation from olfactory bulb output neurons. Cell. 2002;109(2):217–28.

    Article  CAS  PubMed  Google Scholar 

  28. Martin C, Balasubramanian R, Dwyer AA, Au MG, Sidis Y, Kaiser UB, et al. The role of the prokineticin 2 pathway in human reproduction: evidence from the study of human and murine gene mutations. Endocr Rev. 2011;32(2):225–46.

    Article  CAS  PubMed  Google Scholar 

  29. Bouligand J, Ghervan C, Tello JA, Brailly-Tabard S, Salenave S, Chanson P, et al. Isolated familial hypogonadotropic hypogonadism and a GNRH1 mutation. N Engl J Med. 2009;360(26):2742–8.

    Article  CAS  PubMed  Google Scholar 

  30. Francou B, Paul C, Amazit L, Cartes A, Bouvattier C, Albarel F, et al. Prevalence of KISS1 Receptor mutations in a series of 603 patients with normosmic congenital hypogonadotrophic hypogonadism and characterization of novel mutations: a single-centre study. Hum Reprod. 2016;31(6):1363–74.

    Article  CAS  PubMed  Google Scholar 

  31. de Roux N, Young J, Misrahi M, Genet R, Chanson P, Schaison G, et al. A family with hypogonadotropic hypogonadism and mutations in the gonadotropin-releasing hormone receptor. N Engl J Med. 1997;337(22):1597–602.

    Article  PubMed  Google Scholar 

  32. Sykiotis GP, Plummer L, Hughes VA, Au M, Durrani S, Nayak-Young S, et al. Oligogenic basis of isolated gonadotropin-releasing hormone deficiency. Proc Natl Acad Sci U S A. 2010;107(34):15140–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dode C, Levilliers J, Dupont JM, De Paepe A, Le Du N, Soussi-Yanicostas N, et al. Loss-of-function mutations in FGFR1 cause autosomal dominant Kallmann syndrome. Nat Genet. 2003;33(4):463–5.

    Article  CAS  PubMed  Google Scholar 

  34. Pitteloud N, Acierno JS Jr, Meysing A, Eliseenkova AV, Ma J, Ibrahimi OA, et al. Mutations in fibroblast growth factor receptor 1 cause both Kallmann syndrome and normosmic idiopathic hypogonadotropic hypogonadism. Proc Natl Acad Sci U S A. 2006;103(16):6281–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Miraoui H, Dwyer A, Pitteloud N. Role of fibroblast growth factor (FGF) signaling in the neuroendocrine control of human reproduction. Mol Cell Endocrinol. 2011;346(1–2):37–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Villanueva C, Jacobson-Dickman E, Xu C, Manouvrier S, Dwyer AA, Sykiotis GP, et al. Congenital hypogonadotropic hypogonadism with split hand/foot malformation: a clinical entity with a high frequency of FGFR1 mutations. Genet Med. 2015;17(8):651–9.

    Article  CAS  PubMed  Google Scholar 

  37. Falardeau J, Chung WC, Beenken A, Raivio T, Plummer L, Sidis Y, et al. Decreased FGF8 signaling causes deficiency of gonadotropin-releasing hormone in humans and mice. J Clin Invest. 2008;118(8):2822–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Owen BM, Bookout AL, Ding X, Lin VY, Atkin SD, Gautron L, et al. FGF21 contributes to neuroendocrine control of female reproduction. Nat Med. 2013;19(9):1153–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Xu C, Messina A, Somm E, Miraoui H, Kinnunen T, Acierno J Jr, et al. KLB, encoding beta-Klotho, is mutated in patients with congenital hypogonadotropic hypogonadism. EMBO Mol Med. 2017;9:1379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Marcos S, Sarfati J, Leroy C, Fouveaut C, Parent P, Metz C, et al. The prevalence of CHD7 missense versus truncating mutations is higher in patients with Kallmann syndrome than in typical CHARGE patients. J Clin Endocrinol Metab. 2014;99(10):E2138–43.

    Article  CAS  PubMed  Google Scholar 

  41. Kim HG, Kurth I, Lan F, Meliciani I, Wenzel W, Eom SH, et al. Mutations in CHD7, encoding a chromatin-remodeling protein, cause idiopathic hypogonadotropic hypogonadism and Kallmann syndrome. Am J Hum Genet. 2008;83(4):511–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Balasubramanian R, Choi J-H, Francescatto L, Willer J, Horton ER, Asimacopoulos EP, et al. Functionally compromised CHD7 alleles in patients with isolated GnRH deficiency. Proc Natl Acad Sci U S A. 2014;111(50):17953–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Xu C, Cassatella D, van der Sloot AM, Quinton R, Hauschild M, De Geyter C, et al. Evaluating CHARGE syndrome in congenital hypogonadotropic hypogonadism patients harboring CHD7 variants. Genet Med. 2018;20(8):872–81.

    Article  CAS  PubMed  Google Scholar 

  44. Bajpai R, Chen DA, Rada-Iglesias A, Zhang J, Xiong Y, Helms J, et al. CHD7 cooperates with PBAF to control multipotent neural crest formation. Nature. 2010;463(7283):958–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Schnetz MP, Bartels CF, Shastri K, Balasubramanian D, Zentner GE, Balaji R, et al. Genomic distribution of CHD7 on chromatin tracks H3K4 methylation patterns. Genome Res. 2009;19(4):590–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Schulz Y, Wehner P, Opitz L, Salinas-Riester G, Bongers EM, van Ravenswaaij-Arts CM, et al. CHD7, the gene mutated in CHARGE syndrome, regulates genes involved in neural crest cell guidance. Hum Genet. 2014;133(8):997–1009.

    Article  CAS  PubMed  Google Scholar 

  47. Janssen N, Bergman JEH, Swertz MA, Tranebjaerg L, Lodahl M, Schoots J, et al. Mutation update on the CHD7 gene involved in CHARGE syndrome. Hum Mutat. 2012;33(8):1149–60.

    Article  CAS  PubMed  Google Scholar 

  48. Matsumoto S, Yamazaki C, Masumoto KH, Nagano M, Naito M, Soga T, et al. Abnormal development of the olfactory bulb and reproductive system in mice lacking prokineticin receptor PKR2. Proc Natl Acad Sci U S A. 2006;103(11):4140–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cox KH, Oliveira LMB, Plummer L, Corbin B, Gardella T, Balasubramanian R, et al. Modeling mutant/wild-type interactions to ascertain pathogenicity of PROKR2 missense variants in patients with isolated GnRH deficiency. Hum Mol Genet. 2018;27(2):338–50.

    Article  CAS  PubMed  Google Scholar 

  50. Sarfati J, Guiochon-Mantel A, Rondard P, Arnulf I, Garcia-Pinero A, Wolczynski S, et al. A comparative phenotypic study of kallmann syndrome patients carrying monoallelic and biallelic mutations in the prokineticin 2 or prokineticin receptor 2 genes. J Clin Endocrinol Metab. 2010;95(2):659–69.

    Article  CAS  PubMed  Google Scholar 

  51. Lehman MN, Coolen LM, Goodman RL. Minireview: kisspeptin/neurokinin B/dynorphin (KNDy) cells of the arcuate nucleus: a central node in the control of gonadotropin-releasing hormone secretion. Endocrinology. 2010;151(8):3479–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Seminara SB, Messager S, Chatzidaki EE, Thresher RR, Acierno JS Jr, Shagoury JK, et al. The GPR54 gene as a regulator of puberty. N Engl J Med. 2003;349(17):1614–27.

    Article  CAS  PubMed  Google Scholar 

  53. Topaloglu AK, Reimann F, Guclu M, Yalin AS, Kotan LD, Porter KM, et al. TAC3 and TACR3 mutations in familial hypogonadotropic hypogonadism reveal a key role for neurokinin B in the central control of reproduction. Nat Genet. 2009;41(3):354–8.

    Article  CAS  PubMed  Google Scholar 

  54. Topaloglu AK, Tello JA, Kotan LD, Ozbek MN, Yilmaz MB, Erdogan S, et al. Inactivating KISS1 mutation and hypogonadotropic hypogonadism. N Engl J Med. 2012;366(7):629–35.

    Article  CAS  PubMed  Google Scholar 

  55. Costa-Barbosa FA, Balasubramanian R, Keefe KW, Shaw ND, Al-Tassan N, Plummer L, et al. Prioritizing genetic testing in patients with Kallmann syndrome using clinical phenotypes. J Clin Endocrinol Metab. 2013;98(5):E943–53.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Katsanis N. The oligogenic properties of Bardet-Biedl syndrome. Hum Mol Genet. 2004;13 Spec No 1:R65–71.

    Article  PubMed  CAS  Google Scholar 

  57. Kajiwara K, Berson EL, Dryja TP. Digenic retinitis pigmentosa due to mutations at the unlinked peripherin/RDS and ROM1 loci. Science. 1994;264(5165):1604–8.

    Article  CAS  PubMed  Google Scholar 

  58. Hoefele J, Wolf MT, O’Toole JF, Otto EA, Schultheiss U, Deschenes G, et al. Evidence of oligogenic inheritance in nephronophthisis. J Am Soc Nephrol. 2007;18(10):2789–95.

    Google Scholar 

  59. Chung WCJ, Matthews TA, Tata BK, Tsai PS. Compound deficiencies in multiple fibroblast growth factor signalling components differentially impact the murine gonadotrophin-releasing hormone system. J Neuroendocrinol. 2010;22(8):944–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Chan YM, Broder-Fingert S, Paraschos S, Lapatto R, Au M, Hughes V, et al. GnRH-deficient phenotypes in humans and mice with heterozygous variants in KISS1/Kiss1. J Clin Endocrinol Metab. 2011;96(11):E1771–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lawaetz JG, Hagen CP, Mieritz MG, Blomberg Jensen M, Petersen JH, Juul A. Evaluation of 451 Danish boys with delayed puberty: diagnostic use of a new puberty nomogram and effects of oral testosterone therapy. J Clin Endocrinol Metab. 2015;100(4):1376–85.

    Article  CAS  PubMed  Google Scholar 

  62. Ley SB, Leonard JM. Male hypogonadotropic hypogonadism: factors influencing response to human chorionic gonadotropin and human menopausal gonadotropin, including prior exogenous androgens. J Clin Endocrinol Metab. 1985;61(4):746–52.

    Article  CAS  PubMed  Google Scholar 

  63. Kirk JM, Savage MO, Grant DB, Bouloux PM, Besser GM. Gonadal function and response to human chorionic and menopausal gonadotrophin therapy in male patients with idiopathic hypogonadotrophic hypogonadism. Clin Endocrinol. 1994;41(1):57–63.

    Article  CAS  Google Scholar 

  64. Kiess W, Conway G, Ritzen M, Rosenfield R, Bernasconi S, Juul A, et al. Induction of puberty in the hypogonadal girl--practices and attitudes of pediatric endocrinologists in Europe. Horm Res. 2002;57(1–2):66–71.

    CAS  PubMed  Google Scholar 

  65. Drobac S, Rubin K, Rogol AD, Rosenfield RL. A workshop on pubertal hormone replacement options in the United States. J Pediatr Endocrinol Metab. 2006;19(1):55–64.

    Article  PubMed  Google Scholar 

  66. Tsilchorozidou T, Conway GS. Uterus size and ovarian morphology in women with isolated growth hormone deficiency, hypogonadotrophic hypogonadism and hypopituitarism. Clin Endocrinol. 2004;61(5):567–72.

    Article  Google Scholar 

  67. Gulekli B, Davies MC, Jacobs HS. Effect of treatment on established osteoporosis in young women with amenorrhoea. Clin Endocrinol. 1994;41(3):275–81.

    Article  CAS  Google Scholar 

  68. Kenigsberg L, Balachandar S, Prasad K, Shah B. Exogenous pubertal induction by oral versus transdermal estrogen therapy. J Pediatr Adolesc Gynecol. 2013;26(2):71–9.

    Article  PubMed  Google Scholar 

  69. de Muinck Keizer-Schrama SM. Introduction and management of puberty in girls. Horm Res. 2007;68(Suppl 5):80–3.

    PubMed  Google Scholar 

  70. Juul A. The effects of oestrogens on linear bone growth. Hum Reprod Update. 2001;7(3):303–13.

    Article  CAS  PubMed  Google Scholar 

  71. Hindmarsh PC. How do you initiate oestrogen therapy in a girl who has not undergone puberty? Clin Endocrinol. 2009;71(1):7–10.

    Article  CAS  Google Scholar 

  72. Warren MP, Chua A. Appropriate use of estrogen replacement therapy in adolescents and young adults with Turner syndrome and hypopituitarism in light of the Women’s Health Initiative. Growth Horm IGF Res. 2006;16 Suppl A:S98–102.

    Google Scholar 

  73. Crowley WF Jr, McArthur JW. Simulation of the normal menstrual cycle in Kallman’s syndrome by pulsatile administration of luteinizing hormone-releasing hormone (LHRH). J Clin Endocrinol Metab. 1980;51(1):173–5.

    Google Scholar 

  74. Abel BS, Shaw ND, Brown JM, Adams JM, Alati T, Martin KA, et al. Responsiveness to a physiological regimen of GnRH therapy and relation to genotype in women with isolated hypogonadotropic hypogonadism. J Clin Endocrinol Metab. 2013;98(2):E206–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Martin KA, Hall JE, Adams JM, Crowley WF Jr. Comparison of exogenous gonadotropins and pulsatile gonadotropin-releasing hormone for induction of ovulation in hypogonadotropic amenorrhea. J Clin Endocrinol Metab. 1993;77(1):125–9.

    CAS  PubMed  Google Scholar 

  76. Kaufmann R, Dunn R, Vaughn T, Hughes G, O’Brien F, Hemsey G, et al. Recombinant human luteinizing hormone, lutropin alfa, for the induction of follicular development and pregnancy in profoundly gonadotrophin-deficient women. Clin Endocrinol. 2007;67(4):563–9.

    Google Scholar 

  77. Dewailly D, Boucher A, Decanter C, Lagarde JP, Counis R, Kottler ML. Spontaneous pregnancy in a patient who was homozygous for the Q106R mutation in the gonadotropin-releasing hormone receptor gene. Fertil Steril. 2002;77(6):1288–91.

    Article  PubMed  Google Scholar 

  78. Dunkel L, Perheentupa J, Virtanen M, Maenpaa J. GnRH and HCG tests are both necessary in differential diagnosis of male delayed puberty. Am J Dis Child. 1985;139(5):494–8.

    CAS  PubMed  Google Scholar 

  79. Lambert AS, Bougneres P. Growth and descent of the testes in infants with hypogonadotropic hypogonadism receiving subcutaneous gonadotropin infusion. Int J Pediatr Endocrinol. 2016;2016:13.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Dwyer AA, Raivio T, Pitteloud N. Gonadotrophin replacement for induction of fertility in hypogonadal men. Best Pract Res Clin Endocrinol Metab. 2015;29(1):91–103.

    Article  CAS  PubMed  Google Scholar 

  81. Raivio T, Sidis Y, Plummer L, Chen H, Ma J, Mukherjee A, et al. Impaired fibroblast growth factor receptor 1 signaling as a cause of normosmic idiopathic hypogonadotropic hypogonadism. J Clin Endocrinol Metab. 2009;94(11):4380–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Gan EH, Quinton R. Have the testosterone trials demonstrated the effectiveness of testosterone therapy in older men without classical hypogonadism? J R Coll Physicians Edinb. 2016;46(3):168–71.

    Article  CAS  PubMed  Google Scholar 

  83. Finkelstein JS, Neer RM, Biller BM, Crawford JD, Klibanski A. Osteopenia in men with a history of delayed puberty. N Engl J Med. 1992;326(9):600–4.

    Article  CAS  PubMed  Google Scholar 

  84. Tripathy D, Shah P, Lakshmy R, Reddy KS. Effect of testosterone replacement on whole body glucose utilisation and other cardiovascular risk factors in males with idiopathic hypogonadotrophic hypogonadism. Horm Metab Res. 1998;30(10):642–5.

    Article  CAS  PubMed  Google Scholar 

  85. Naharci MI, Pinar M, Bolu E, Olgun A. Effect of testosterone on insulin sensitivity in men with idiopathic hypogonadotropic hypogonadism. Endocr Pract. 2007;13(6):629–35.

    Article  PubMed  Google Scholar 

  86. Bayram F, Elbuken G, Korkmaz C, Aydogdu A, Karaca Z, Cakir I. The Effects of Gonadotropin Replacement Therapy on Metabolic Parameters and Body Composition in Men with Idiopathic Hypogonadotropic Hypogonadism. Horm Metab Res. 2016;48(2):112–7.

    CAS  PubMed  Google Scholar 

  87. Jackson RS, Creemers JW, Ohagi S, Raffin-Sanson ML, Sanders L, Montague CT, et al. Obesity and impaired prohormone processing associated with mutations in the human prohormone convertase 1 gene. Nat Genet. 1997;16(3):303–6.

    Article  CAS  PubMed  Google Scholar 

  88. Farooqi IS, Matarese G, Lord GM, Keogh JM, Lawrence E, Agwu C, et al. Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. J Clin Invest. 2002;110(8):1093–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Farooqi IS, Wangensteen T, Collins S, Kimber W, Matarese G, Keogh JM, et al. Clinical and molecular genetic spectrum of congenital deficiency of the leptin receptor. N Engl J Med. 2007;356(3):237–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nelly Pitteloud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xu, C., Pitteloud, N. (2019). Congenital Hypogonadotropic Hypogonadism (Isolated GnRH Deficiency). In: Kohn, B. (eds) Pituitary Disorders of Childhood. Contemporary Endocrinology. Humana Press, Cham. https://doi.org/10.1007/978-3-030-11339-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11339-1_12

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-030-11338-4

  • Online ISBN: 978-3-030-11339-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics