Skip to main content

Genetics of Aortic Diseases

  • Chapter
  • First Online:
Diseases of the Aorta

Abstract

The clinically most important aortic diseases are those that cause aneurysms and dissections in the aortic wall. Aortic aneurysms and/or dissections are sometimes subject to sudden rupture, which often causes sudden death. Currently the biggest problem in addressing sudden rupture is, that early stage aneurysm, which can be successfully treated by surgery, remains often undetected because it is not associated with clearly detectable symptoms.

Aortic aneurysmal diseases include thoracic aortic aneurysms (TAAs) and abdominal aortic aneurysms (AAAs). TAAs have a strong and well-characterized genetic component. In the western world, TAA occurs with an incidence of about 12 per 100,000 per year in all age groups, shows little gender bias and does not show strict association with cardiovascular risk factors (Saratzis A, Bown MJ, Heart 100:916–922, 2014). In contrast, AAA is generally diagnosed in people over the age of 65, has a prevalence rate of about 8% for men and 1% for women (Miner GH, Faries PL, Costa KD, Hanss BG, Marin ML, Expert Rev Cardiovasc Ther 13:1079–1090, 2015), and shows strong association with male gender, smoking, and cardiovascular disease.

We summarize here the most important facts about the known TAA and AAA types, with emphasis on known genetic cause(s) and risk factors and how they relate to cellular pathology and clinical treatment. For each type we describe in detail the relevant genetic animal model(s) and how these may inform current pharmacological management and surgical treatment as well as future drug development and gene/cell therapy. Importantly, we show how animal models of genetic TAA and AAA also strongly inform treatment and drug development for non-genetic TAA and AAA, which indeed comprise at least 70% of all aneurysmal disease. We also illustrate how genetic testing can help predict risk of aneurysmal disease at birth and also describe efforts to devise blood tests that reliably predict development of TAA and AAA well before they rupture.

These are clearly exciting times for the field of aneurysmal disease as we move toward unprecedented personalized and effective treatment of patients based on very detailed knowledge of the genetic and non-genetic causes. Ultimately early detection combined with novel drugs as well as cell/gene therapies may significantly reduce the need for surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

TAA:

Thoracic aortic aneurysm

AAA:

Abdominal aortic aneurysm

FTAAD:

Familial thoracic aortic aneurysm and dissection

LDS:

Loeys–Dietz syndrome

MFS:

Marfan syndrome

vEDS:

Vascular Ehlers–Danlos syndrome

BAV:

Bicuspid aortic valve syndrome

ATS:

Arterial tortuosity syndrome

ECM:

Extracellular matrix

VSMC:

Vascular smooth muscle cell

AngII:

Angiotensin II

NAD+ :

Nicotinamide adenine dinucleotide

MI:

Myocardial infarction

CAD:

Coronary artery disease

SNP:

Single nucleotide polymorphism (the associated rs number unambiguously identifies both the SNP’s exact genetic location and specific nucleotide change)

NGS:

Next-generation sequencing

GWAS:

Genome-wide association study

WES:

Whole exome sequencing

Exon:

Protein coding DNA sequences of a gene

Intron:

Non-protein coding DNA sequences of a gene, usually larger than exons

Promoter:

Short DNA sequence located upstream of the transcription start site of a gene that induces production of the mRNA and protein encoded by the gene

Enhancer:

Short DNA sequence located up to 100kB away from a gene; interacts with a gene’s promoter to enhance protein production of the gene

OMIM:

Online Mendelian Inheritance in Man database

kB:

Kilobases of DNA

kD:

Kilodalton of protein

miRNA:

microRNA, short ~20 nucleotide long RNA produced by a short gene, it regulates activity of other genes

lncRNA:

Long non-coding RNA, a long RNA (produced from a long gene) that cannot be translated into a protein but nevertheless regulates the activity of other genes

FBN1:

Fibrillin 1

TGFbeta:

Transforming growth factor beta

TGFBR1:

Transforming growth factor beta receptor 1

TGFBR2:

Transforming growth factor beta receptor 2

TGFB2:

Transforming growth factor beta 2

TGFB3:

Transforming growth factor beta 3

MYH11:

Myosin heavy chain 11

ACTA2:

Alpha 2 actin, smooth muscle cell specific

MYLK:

Myosin light chain kinase

PRKG1:

cGMP-dependent protein kinase 1

MFAP5:

Microfibril-associated protein 5

LOX:

Lysil oxidase

FOXE3:

Forkhead box E3 gene

NOTCH1:

NOTCH1 gene

SMAD2:

SMAD family member 2 gene

SMAD3:

SMAD family member 3 gene

SKI:

SKI proto oncogene

LDLR:

Low-density lipoprotein receptor

SORT1:

sortilin 1

IL6R:

Interleukin 6 receptor

MMP9:

Metalloproteinase 9

9p21:

Chromosome 9 locus 21

ANRIL:

Long non-coding RNA ANRIL

SMYD2:

SET and MYND Domain containing 2 (protein lysine N methyl transferase)

ERG:

ETS-related gene

DAB2IP:

DAB2 interacting protein

LINC00540:

Long non-coding RNA LINC00540

References

  1. Saratzis A, Bown MJ. The genetic basis for aortic aneurysmal disease. Heart. 2014;100:916–22.

    Article  CAS  PubMed  Google Scholar 

  2. Miner GH, Faries PL, Costa KD, Hanss BG, Marin ML. An update on the etiology of abdominal aortic aneurysms: implications for future diagnostic testing. Expert Rev CardiovascTher. 2015;13:1079–90.

    Article  CAS  Google Scholar 

  3. Goyal A, Keramati AR, Czarny MJ, Resar JR, Mani A. The genetics of aortopathies in clinical cardiology. Clin Med Insights Cardiol. 2017;11:1179546817709787.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Albornoz G, et al. Familial thoracic aortic aneurysms and dissections--incidence, modes of inheritance, and phenotypic patterns. Ann ThoracSurg. 2006;82:1400–5.

    Article  Google Scholar 

  5. Pyeritz RE. Recent progress in understanding the natural and clinical histories of the Marfan syndrome. Trends Cardiovasc Med. 2016;26:423–8.

    Article  PubMed  Google Scholar 

  6. Brownstein AJ, et al. Genes associated with thoracic aortic aneurysm and dissection: an update and clinical implications. Aorta (Stamford). 2017;5:11–20.

    Article  Google Scholar 

  7. Verstraeten A, Alaerts M, Van Laer L, Loeys B. Marfan syndrome and related disorders: 25 years of gene discovery. Hum Mutat. 2016;37:524–31.

    Article  CAS  PubMed  Google Scholar 

  8. Isselbacher EM, Lino Cardenas CL, Lindsay ME. Hereditary influence in thoracic aortic aneurysm and dissection. Circulation. 2016;133:2516–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hinterseher I, Tromp G, Kuivaniemi H. Genes and abdominal aortic aneurysm. Ann Vasc Surg. 2011;25:388–412.

    Article  PubMed  Google Scholar 

  10. Bradley DT, Badger SA, McFarland M, Hughes AE. Abdominal aortic aneurysm Genetic Associations: mostly false? a systematic review and meta-analysis. Eur J VascEndovascSurg. 2016;51:64–75.

    CAS  Google Scholar 

  11. Jones GT, et al. Meta-analysis of Genome-Wide Association studies for abdominal aortic aneurysm identifies four new disease-specific risk loci. Circ Res. 2017;120:341–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fisher AB, et al. A novel lysophosphatidylcholine acyl transferase activity is expressed by peroxiredoxin 6. J Lipid Res. 2016;57:587–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li H, et al. Critical role of peroxiredoxin 6 in the repair of peroxidized cell membranes following oxidative stress. Free RadicBiol Med. 2015;87:356–65.

    Article  CAS  Google Scholar 

  14. Sorokina EM, et al. Mutation of Serine 32 to Threonine in Peroxiredoxin 6 preserves its structure and enzymatic function but abolishes its trafficking to lamellar bodies. J BiolChem. 2016;291:9268–80.

    CAS  Google Scholar 

  15. Cheung C, Bernardo AS, Trotter MW, Pedersen RA, Sinha S. Generation of human vascular smooth muscle subtypes provides insight into embryological origin-dependent disease susceptibility. Nat Biotechnol. 2012;30:165–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Guo DC, Papke CL, He R, Milewicz DM. Pathogenesis of thoracic and abdominal aortic aneurysms. Ann N Y AcadSci. 2006;1085:339–52.

    Article  CAS  Google Scholar 

  17. Piechota-Polanczyk A, AlicjaJozkowicz WN, Eilenberg W, ChristophNeumayer TM, Huk I, Brostjan C. The abdominal aortic aneurysm and intraluminal thrombus: current concepts of development and treatment. Front Cardiovasc Med. 2015;2:19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Loeys BL, et al. Aneurysm syndromes caused by mutations in the TGF-beta receptor. N Engl J Med. 2006;355:788–98.

    Article  CAS  PubMed  Google Scholar 

  19. Robertson E, Dilworth C, Lu Y, Hambly B, Jeremy R. Molecular mechanisms of inherited thoracic aortic disease - from gene variant to surgical aneurysm. Biophys Rev. 2015;7:105–15.

    Article  CAS  PubMed  Google Scholar 

  20. MacFarlane EG, Haupt J, Dietz HC, Shore EM. TGF-beta family signaling in connective tissue and skeletal diseases. Cold Spring Harb Perspect Biol. 2017.

    Google Scholar 

  21. Kim HW, Stansfield BK. Genetic and epigenetic regulation of aortic aneurysms. Biomed Res Int. 2017;2017:7268521.

    PubMed  PubMed Central  Google Scholar 

  22. Dietz HC, et al. Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature. 1991;352:337–9.

    Article  CAS  PubMed  Google Scholar 

  23. Ladich E, Yahagi K, Romero ME, Virmani R. Vascular diseases: aortitis, aortic aneurysms, and vascular calcification. CardiovascPathol. 2016;25:432–41.

    Google Scholar 

  24. Gillis E, et al. Candidate gene resequencing in a large bicuspid aortic valve-associated thoracic aortic aneurysm cohort: SMAD6 as an important contributor. Front Physiol. 2017;8:400.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Dietz HC, et al. The Marfan syndrome locus: confirmation of assignment to chromosome 15 and identification of tightly linked markers at 15q15-q21.3. Genomics. 1991;9:355–61.

    Article  CAS  PubMed  Google Scholar 

  26. McKusick VA. The defect in Marfan syndrome. Nature. 1991;352:279–81.

    Article  CAS  PubMed  Google Scholar 

  27. Cook JR, Carta L, Galatioto J, Ramirez F. Cardiovascular manifestations in Marfan syndrome and related diseases; multiple genes causing similar phenotypes. Clin Genet. 2015;87:11–20.

    Article  CAS  PubMed  Google Scholar 

  28. Baer RW, Taussig HB, Oppenheimer EH. Congenital aneurysmal dilatation of the aorta associated with arachnodactyly. Bull. Johns Hopkins Hosp. 1943;72:309–31.

    Google Scholar 

  29. Chatrath R, Beauchesne LM, Connolly HM, Michels VV, Driscoll DJ. Left ventricular function in the Marfan syndrome without significant valvular regurgitation. Am J Cardiol. 2003;91:914–6.

    Article  PubMed  Google Scholar 

  30. Hecht F, Beals RK. “New” syndrome of congenital contractural arachnodactyly originally described by Marfan in 1896. Pediatrics. 1972;49: 574–79.

    Google Scholar 

  31. Pyeritz RE, McKusick VA. TheMarfan syndrome: diagnosis and management. N Engl J Med. 1979;300:772–7.

    Article  CAS  PubMed  Google Scholar 

  32. Pyeritz RE. Marfan syndrome: current and future clinical and genetic management of cardiovascular manifestations. SeminThoracCardiovascSurg. 1993;5:11–6.

    CAS  Google Scholar 

  33. Loeys BL, et al. The revised Ghent nosology for the Marfan syndrome. J Med Genet. 2010;47:476–85.

    Article  CAS  PubMed  Google Scholar 

  34. Westling L, Mohlin B, Bresin A. Craniofacial manifestations in the Marfan syndrome: palatal dimensions and a comparative cephalometric analysis. J Craniofac Genet DevBiol. 1998;18:211–8.

    CAS  Google Scholar 

  35. Brown OR, et al. Aortic root dilatation and mitral valve prolapse in Marfan’s syndrome: an ECHOCARDIOgraphic study. Circulation. 1975;52:651–7.

    Article  CAS  PubMed  Google Scholar 

  36. Weir B. Leptomeningeal cysts in congenital ectopia lentis. Case report. J Neurosurg. 1973;38:650–4.

    Article  CAS  PubMed  Google Scholar 

  37. Newman PK, Tilley PJ. Myelopathy in Marfan’s syndrome. J NeurolNeurosurg Psychiatry. 1979;42:176–8.

    Article  CAS  Google Scholar 

  38. Cilluffo JM, Gomez MR, Reese DF, Onofrio BM, Miller RH. Idiopathic (“congenital”) spinal arachnoid diverticula. Clinical diagnosis and surgical results. Mayo ClinProc. 1981;56:93–101.

    CAS  Google Scholar 

  39. Pyeritz RE, Fishman EK, Bernhardt BA, Siegelman SS. Dural ectasia is a common feature of the Marfan syndrome. Am J Hum Genet. 1988;43:726–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Dietz HC, Pyeritz RE. Mutations in the human gene for fibrillin-1 (FBN1) in the Marfan syndrome and related disorders. Hum Mol Genet. 1995;4 Spec No:1799–809.

    Article  CAS  PubMed  Google Scholar 

  41. Eldadah ZA, Brenn T, Furthmayr H, Dietz HC. Expression of a mutant human fibrillin allele upon a normal human or murine genetic background recapitulates a Marfan cellular phenotype. J Clin Invest. 1995;95:874–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Collod-Beroud G, et al. Update of the UMD-FBN1 mutation database and creation of an FBN1 polymorphism database. Hum Mutat. 2003;22:199–208.

    Article  CAS  PubMed  Google Scholar 

  43. Habashi JP, et al. Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome. Science. 2006;312:117–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang Y, et al. TGF-beta activity protects against inflammatory aortic aneurysm progression and complications in angiotensin II-infused mice. J Clin Invest. 2010;120:422–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wei H, et al. Aortopathy in a Mouse Model of Marfan syndrome is not mediated by altered transforming growth factor beta signaling. J Am Heart Assoc. 2017;6.

    Google Scholar 

  46. Yang P, et al. Smooth muscle cell-specific Tgfbr1 deficiency promotes aortic aneurysm formation by stimulating multiple signaling events. Sci Rep. 2016;6:35444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hibender S, et al. Resveratrol inhibits aortic root dilatation in the Fbn1C1039G/+ Marfan Mouse model. ArteriosclerThrombVascBiol. 2016;36:1618–26.

    CAS  Google Scholar 

  48. Lacro RV, et al. Atenolol versus losartan in children and young adults with Marfan’s syndrome. N Engl J Med. 2014;371:2061–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Franken R, et al. Beneficial outcome of Losartan therapy depends on type of FBN1 mutation in Marfan syndrome. CircCardiovasc Genet. 2015;8:383–8.

    Article  CAS  Google Scholar 

  50. Dietz HC. Potential phenotype-genotype correlation in Marfan syndrome: when less is more? CircCardiovasc Genet. 2015;8:256–60.

    Article  Google Scholar 

  51. Wang Y, et al. Gene expression signature in peripheral blood detects thoracic aortic aneurysm. PLoS One. 2007;2:e1050.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Morris DR, et al. Telmisartan in the management of abdominal aortic aneurysm (TEDY): the study protocol for a randomized controlled trial. Trials. 2015;16:274.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Loeys BL, et al. A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2. Nat Genet. 2005;37:275–81.

    Article  CAS  PubMed  Google Scholar 

  54. MacCarrick G, et al. Loeys-Dietz syndrome: a primer for diagnosis and management. Genet Med. 2014;16:576–87.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Bertoli-Avella AM, et al. Mutations in a TGF-beta ligand, TGFB3, cause syndromic aortic aneurysms and dissections. J Am CollCardiol. 2015;65:1324–36.

    Article  CAS  Google Scholar 

  56. Pyeritz R, et al. Loeys-Dietz syndrome is a specific phenotype and not a concomitant of any mutation in a gene involved in TGF-beta signaling. Genet Med. 2014;16:641–2.

    Article  CAS  PubMed  Google Scholar 

  57. Jondeau G, et al. International registry of patients carrying TGFBR1 or TGFBR2 mutations: results of the MAC (Montalcino Aortic Consortium). CircCardiovasc Genet. 2016;9:548–58.

    Article  CAS  Google Scholar 

  58. Gallo EM, et al. Angiotensin II-dependent TGF-beta signaling contributes to Loeys-Dietz syndrome vascular pathogenesis. J Clin Invest. 2014;124:448–60.

    Article  CAS  PubMed  Google Scholar 

  59. Hu JH, et al. Postnatal deletion of the Type II transforming growth factor-beta receptor in smooth muscle cells causes severe aortopathy in mice. ArteriosclerThrombVascBiol. 2015;35:2647–56.

    CAS  Google Scholar 

  60. van der Pluijm I, et al. Defective connective tissue remodeling in Smad3 Mice leads to accelerated aneurysmal growth through disturbed downstream TGF-beta signaling. EBioMedicine. 2016;12:280–94.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Lindsay ME, et al. Loss-of-function mutations in TGFB2 cause a syndromic presentation of thoracic aortic aneurysm. Nat Genet. 2012;44:922–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pope FM, et al. COL3A1 mutations cause variable clinical phenotypes including acrogeria and vascular rupture. Br J Dermatol. 1996;135:163–81.

    Article  CAS  PubMed  Google Scholar 

  63. Pepin M, Schwarze U, Superti-Furga A, Byers PH. Clinical and genetic features of Ehlers-Danlos syndrome type IV, the vascular type. N Engl J Med. 2000;342:673–80.

    Article  CAS  PubMed  Google Scholar 

  64. Yoneda A, et al. Spontaneous colon perforations associated with a vascular type of ehlers-danlos syndrome. Case Rep Gastroenterol. 2014;8:175–81.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Toghill BJ, Saratzis A, Bown MJ. Abdominal aortic aneurysm-an independent disease to atherosclerosis? CardiovascPathol. 2017;27:71–5.

    Google Scholar 

  66. Takagi H, Takuya Umemoto for the ALICE (All-Literature Investigation of Cardiovascular Evidence) Group. Association of diabetes mellitus with presence, expansion, and rupture of abdominal aortic aneurysm: “Curiouser and curiouser!” cried ALICE. Semin Vasc Surg. 2016;29:18–26.

    Article  PubMed  Google Scholar 

  67. Frank M, et al. The type of variants at the COL3A1 gene associates with the phenotype and severity of vascular Ehlers-Danlos syndrome. Eur J Hum Genet. 2015;23:1657–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Heagerty AM. Vascular lesions in Ehlers-Danlos syndrome: is angiotensin II the culprit? Hypertension. 2013;62:8–9.

    Article  CAS  PubMed  Google Scholar 

  69. Faugeroux J, et al. Angiotensin II promotes thoracic aortic dissections and ruptures in Col3a1 haplo insufficient mice. Hypertension. 2013;62:203–8.

    Article  CAS  PubMed  Google Scholar 

  70. Ong KT, et al. Effect of celiprolol on prevention of cardiovascular events in vascular Ehlers-Danlos syndrome: a prospective randomised, open, blinded-endpoints trial. Lancet. 2010;376:1476–84.

    Article  CAS  PubMed  Google Scholar 

  71. Cripe L, Andelfinger G, Martin LJ, Shooner K, Benson DW. Bicuspid aortic valve is heritable. J Am Coll Cardiol. 2004;44:138–43.

    Article  PubMed  Google Scholar 

  72. Garg V, et al. Mutations in NOTCH1 cause aortic valve disease. Nature. 2005;437:270–4.

    Article  CAS  PubMed  Google Scholar 

  73. Galvin KM, et al. A role for smad6 in development and homeostasis of the cardiovascular system. Nat Genet. 2000;24:171–4.

    Article  CAS  PubMed  Google Scholar 

  74. Koenig SN, Lincoln J, Garg V. Genetic basis of aortic valvular disease. Curr Opin Cardiol. 2017.

    Google Scholar 

  75. Andreassi MG, Della Corte A. Genetics of bicuspid aortic valve aortopathy. Curr Opin Cardiol. 2016;31:585–92.

    Article  PubMed  Google Scholar 

  76. Martin PS, et al. Embryonic development of the bicuspid aortic valve. J Cardiovasc Dev Dis. 2015;2:248–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Coucke PJ, Willaert A, Wessels MW, Callewaert B, et al. Mutations in the facilitative glucose transporter GLUT10 alter angiogenesis and cause arterial tortuosity syndrome. Nat Genet. 2006;38(4):452–7.

    Article  CAS  PubMed  Google Scholar 

  78. Milewicz DM, et al. Genetic basis of thoracic aortic aneurysms and dissections: focus on smooth muscle cell contractile dysfunction. Annu Rev Genomics Hum Genet. 2008;9:283–302.

    Article  CAS  PubMed  Google Scholar 

  79. Milewicz DM, Ostergaard JR, la-Kokko LM, Khan N, Grange DK, Mendoza-Londono R, et al. De novo ACTA2 mutation causes a novel syndrome of multisystemic smooth muscle dysfunction. Am J Med Genet A. 2010;152A:2437–43.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Guo DC, Papke CL, Tran-Fadulu V, Regalado ES, Avidan N, Johnson RJ, et al. Mutations in smooth muscle alpha-actin (ACTA2) cause coronary artery disease, stroke, and moyamoya disease, along with thoracic aortic disease. Am J Hum Genet.

    Google Scholar 

  81. Humphrey JD, Milewicz DM. Aging, smooth muscle vitality, and aortic integrity. Circ Res. 2017;120:1849–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Guemann AS, et al. ELN gene triplication responsible for familial supravalvular aortic aneurysm. Cardiol Young. 2015;25:712–7.

    Article  PubMed  Google Scholar 

  83. Paterakis K, et al. Variants of the elastin (ELN) gene and susceptibility to intracranial aneurysm: a synthesis of genetic association studies using a genetic model-free approach. Int J Neurosci. 2017;127:567–72.

    Article  PubMed  Google Scholar 

  84. Renard M, et al. Altered TGF beta signaling and cardiovascular manifestations in patients with autosomal recessive cutis laxa type I caused by fibulin-4 deficiency. Eur J Hum Genet. 2010;18:895–901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hebson C, et al. Severe aortopathy due to fibulin-4 deficiency: molecular insights, surgical strategy, and a review of the literature. Eur J Pediatr. 2014;173:671–5.

    PubMed  Google Scholar 

  86. Halabi CM, et al. Fibulin-4 is essential for maintaining arterial wall integrity in conduit but not muscular arteries. Sci Adv. 2017;3:e1602532.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Igoucheva O, et al. Fibulin-4 E57K knock-in mice recapitulate cutaneous, vascular and skeletal defects of recessive Cutis Laxa 1B with both elastic fiber and collagen fibril abnormalities. J Biol Chem. 2015;290:21443–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Pannu H, et al. MYH11 mutations result in a distinct vascular pathology driven by insulin-like growth factor 1 and angiotensin II. Hum Mol Genet. 2007;16:2453–62.

    Article  CAS  PubMed  Google Scholar 

  89. Guo DC, Pannu H, Papke CL, Yu RK, Avidan N, Bourgeois S, et al. Mutations in smooth muscle alpha-actin (ACTA2) lead to thoracic aortic aneurysms and dissections. Nat Genet. 2007;39:1488–93.

    Article  CAS  PubMed  Google Scholar 

  90. Karimi A, Milewicz DM. Structure of the elastin-contractile units in the thoracic aorta and how genes that cause thoracic aortic aneurysms and dissections disrupt this structure. Can J Cardiol. 2016;32(1):26–34.

    Article  PubMed  Google Scholar 

  91. Chen J, et al. Loss of smooth muscle alpha-actin leads to NF-kappaB-dependent increased sensitivity to angiotensin II in smooth muscle cells and aortic enlargement. Circ Res. 2017;120:1903–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wang L, et al. Mutations in myosin light chain kinase cause familial aortic dissections. Am J Hum Genet. 2010;87:701–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hannuksela M, et al. A novel variant in MYLK causes thoracic aortic dissections: genotypic and phenotypic description. BMC Med Genet. 2016;17:61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Bellini C, Wang S, Milewicz DM, Humphrey JD. Myh11(R247C/R247C) mutations increase thoracic aorta vulnerability to intramural damage despite a general biomechanical adaptivity. J Biomech. 2015;48:113–21.

    Article  PubMed  Google Scholar 

  95. Micha D, et al. SMAD2 mutations are associated with arterial aneurysms and dissections. Hum Mutat. 2015;36:1145–9.

    Article  CAS  PubMed  Google Scholar 

  96. Zhang W, et al. Exome sequencing identified a novel SMAD2 mutation in a Chinese family with early onset aortic aneurysms. ClinChimActa. 2017;468:211–4.

    CAS  Google Scholar 

  97. Guo DC, et al. LOX mutations predispose to thoracic aortic aneurysms and dissections. Circ Res. 2016;118:928–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Lee VS, et al. Loss of function mutation in LOX causes thoracic aortic aneurysm and dissection in humans. Proc Natl Acad Sci U S A. 2016;113:8759–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Smith-Mungo LI, Kagan HM. Lysyl oxidase: properties, regulation and multiple functions in biology. Matrix Biol. 1998;16:387–98.

    Article  CAS  PubMed  Google Scholar 

  100. Kuang SQ, et al. FOXE3 mutations predispose to thoracic aortic aneurysms and dissections. J Clin Invest. 2016;126:948–61.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Vaughan CJ, et al. Identification of a chromosome 11q23.2-q24 locus for familial aortic aneurysm disease, a genetically heterogeneous disorder. Circulation. 2001;103:2469–75.

    Article  CAS  PubMed  Google Scholar 

  102. Wu D, Shen YH, Russell L, Coselli JS, LeMaire SA. Molecular mechanisms of thoracic aortic dissection. J Surg Res. 2013;184:907–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Guo D, et al. Familial thoracic aortic aneurysms and dissections: genetic heterogeneity with a major locus mapping to 5q13-14. Circulation. 2001;103:2461–8.

    Article  CAS  PubMed  Google Scholar 

  104. Wu D, et al. Inflammatory cell infiltrates in acute and chronic thoracic aortic dissection. Aorta (Stamford). 2013;1:259–67.

    Article  Google Scholar 

  105. Wu D, et al. NLRP3 (Nucleotide Oligomerization domain-like receptor family, pyrin domain containing 3)-Caspase-1 Inflammasome degrades contractile proteins: implications for aortic biomechanical dysfunction and aneurysm and dissection formation. Arterioscler Thromb Vasc Biol. 2017;37:694–706.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Watson A, et al. NicotinamidePhosphoribosyltransferase in smooth muscle cells maintains genome integrity, resists aortic medial degeneration, and is suppressed in human thoracic aortic aneurysm disease. Circ Res. 2017;120:1889–902.

    Article  CAS  PubMed  Google Scholar 

  107. Peterss S, et al. Changing pathology of the thoracic aorta from acute to chronic dissection: literature review and insights. J Am Coll Cardiol. 2016;68:1054–65.

    Article  PubMed  Google Scholar 

  108. Ziganshin BA, et al. Routine genetic testing for thoracic aortic aneurysm and dissection in a clinical setting. Ann Thorac Surg. 2015;100:1604–11.

    Article  PubMed  Google Scholar 

  109. Poninska JK, et al. Next-generation sequencing for diagnosis of thoracic aortic aneurysms and dissections: diagnostic yield, novel mutations and genotype phenotype correlations. J Transl Med. 2016;14:115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zhang W, et al. Identification of a missense mutation of COL3A1 in a Chinese family with atypical Ehlers-Danlos syndrome using targeted next-generation sequencing. Mol Med Rep. 2017;15:936–40.

    Article  CAS  PubMed  Google Scholar 

  111. Chau KH, Elefteriades JA. Natural history of thoracic aortic aneurysms: size matters, plus moving beyond size. Prog Cardiovasc Dis. 2013;56:74–80.

    Article  PubMed  Google Scholar 

  112. Elefteriades JA, Farkas EA. Thoracic aortic aneurysm clinically pertinent controversies and uncertainties. J Am Coll Cardiol. 2010;55:841–57.

    Article  CAS  PubMed  Google Scholar 

  113. Rabkin SW. The role matrix metalloproteinases in the production of aortic aneurysm. Prog Mol Biol Transl Sci. 2017;147:239–65.

    Article  PubMed  Google Scholar 

  114. Lemcke H, Voronina N, Steinhoff G, David R. Recent Progress in stem cell modification for cardiac regeneration. Stem Cells Int. 2018;2018:1909346.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Chasman DI, Lawler PR. Understanding AAA pathobiology: a GWAS leads the way. Circ Res. 2017;120:259–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Clifton MA. Familial abdominal aortic aneurysms. Br J Surg. 1977;64:765–6.

    Article  CAS  PubMed  Google Scholar 

  117. Johansen K, Koepsell T. Familial tendency for abdominal aortic aneurysms. JAMA. 1986;256:1934–6.

    Article  CAS  PubMed  Google Scholar 

  118. Larsson E, Granath F, Swedenborg J, Hultgren R. A population-based case-control study of the familial risk of abdominal aortic aneurysm. J Vasc Surg. 2009;49:47–50; discussion 51.

    Article  PubMed  Google Scholar 

  119. Tilson MD, Seashore MR. Human genetics of the abdominal aortic aneurysm. Surg Gynecol Obstet. 1984;158:129–32.

    CAS  PubMed  Google Scholar 

  120. Wahlgren CM, Larsson E, Magnusson PK, Hultgren R, Swedenborg J. Genetic and environmental contributions to abdominal aortic aneurysm development in a twin population. J Vasc Surg. 2010;51:3–7; discussion 7.

    Article  PubMed  Google Scholar 

  121. Alcorn HG, Wolfson SK Jr, Sutton-Tyrrell K, Kuller LH, O'Leary D. Risk factors for abdominal aortic aneurysms in older adults enrolled in the cardiovascular health study. Arterioscler Thromb Vasc Biol. 1996;16:963–70.

    Article  CAS  PubMed  Google Scholar 

  122. Trollope A, Moxon JV, Moran CS, Golledge J. Animal models of abdominal aortic aneurysm and their role in furthering management of human disease. Cardiovasc Pathol. 2011;20:114–23.

    Article  PubMed  Google Scholar 

  123. Dieter RA Jr, Kuzycz GB, Dieter RA 3rd, Dieter RS. Forty years’ experience treating septic arteritis and vasculitis. Int J Angiol. 2009;18:33–6.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Roscher AA, Kato NS, Sambasivan V, Proffett G. Idiopathic cystic medial necrosis of the coronary arteries leading to myocardial infarction, old and recent. Clinical pathologic correlation and historical review. J Cardiovasc Surg (Torino). 1996;37:87–91.

    CAS  Google Scholar 

  125. Yamada Y, et al. Identification of EGFLAM, SPATC1L and RNASE13 as novel susceptibility loci for aortic aneurysm in Japanese individuals by exome-wide association studies. Int J Mol Med. 2017;39:1091–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Fairoozy RH, White J, Palmen J, Kalea AZ, Humphries SE. Identification of the functional variant(s) that explain the low-density lipoprotein receptor (LDLR) GWAS SNP rs6511720 association with lower LDL-C and risk of CHD. PLoS One. 2016;11:e0167676.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Teslovich TM, et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature. 2010;466(7307):707–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Bradley DT, et al. A variant in LDLR is associated with abdominal aortic aneurysm. Circ Cardiovasc Genet. 2013;6(5):498–504.

    Article  CAS  PubMed  Google Scholar 

  129. Cuchel M, et al. Homozygous familial hypercholesterolaemia: new insights and guidance for clinicians to improve detection and clinical management. A position paper from the consensus panel on familial Hypercholesterolaemia of the European atherosclerosis society. Eur Heart J. 2014;35(32):2146–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Leren TP. Sorting an LDL receptor with bound PCSK9 to intracellular degradation. Atherosclerosis. 2014;237:76–81.

    Article  CAS  PubMed  Google Scholar 

  131. Goldstein JL, Brown MS. The LDL receptor. Arterioscler Thromb Vasc Biol. 2009;29:431–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Rudenko G, et al. Structure of the LDL receptor extracellular domain at endosomalpH. Science. 2002;298:2353–8.

    Article  CAS  PubMed  Google Scholar 

  133. Kita Y, et al. Abdominal aortic aneurysms in familial hypercholesterolemia--case reports. Angiology. 1993;44:491–9.

    Article  CAS  PubMed  Google Scholar 

  134. Wagsater D, et al. Elevated Adiponectin levels suppress perivascular and aortic inflammation and prevent AngII-induced advanced abdominal aortic aneurysms. Sci Rep. 2016;6:31414.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Sandhu MS, et al. LDL-cholesterol concentrations: a genome-wide association study. Lancet. 2008;371(9611):483–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Dehghan A, et al. Genome-wide association study for incident myocardial infarction and coronary heart disease in prospective cohort studies: the CHARGE consortium. PLoS One. 2016;11(3):e0144997.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Webb TR, et al. Systematic evaluation of pleiotropy identifies 6 further loci associated with coronary artery disease. J Am Coll Cardiol. 2017;69(7):823–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Dichgans M, et al. Shared genetic susceptibility to ischemic stroke and coronary artery disease: a genome-wide analysis of common variants. Stroke. 2014;45(1):24–36.

    Article  CAS  PubMed  Google Scholar 

  139. Musunuru K, et al. From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus. Nature. 2010;466(7307):714–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Patel KM, et al. Macrophage sortilin promotes LDL uptake, foam cell formation, and atherosclerosis. Circ Res. 2015;116:789–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Harrison SC, et al. Interleukin-6 receptor pathways in abdominal aortic aneurysm. Eur Heart J. 2013;34:3707–16.

    Article  CAS  PubMed  Google Scholar 

  142. Anzai A, et al. Adventitial CXCL1/G-CSF expression in response to acute aortic dissection triggers local neutrophil recruitment and activation leading to aortic rupture. Circ Res. 2015;116:612–23.

    Article  CAS  PubMed  Google Scholar 

  143. Li G, et al. Inhibition of the mTOR pathway in abdominal aortic aneurysm: implications of smooth muscle cell contractile phenotype, inflammation, and aneurysm expansion. Am J Physiol Heart Circ Physiol. 2017;312:H1110–9.

    Article  PubMed  Google Scholar 

  144. McPherson R, et al. A common allele on chromosome 9 associated with coronary heart disease. Science. 2007;316:1488–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Leeper NJ, et al. Loss of CDKN2B promotes p53-dependent smooth muscle cell apoptosis and aneurysm formation. Arterioscler Thromb Vasc Biol. 2013;33:e1–e10.

    Article  CAS  PubMed  Google Scholar 

  146. Loinard C, et al. Deletion of chromosome 9p21 noncoding cardiovascular risk interval in mice alters Smad2 signaling and promotes vascular aneurysm. Circ Cardiovasc Genet. 2014;7:799–805.

    Article  CAS  PubMed  Google Scholar 

  147. Broadbent HM, et al. Susceptibility to coronary artery disease and diabetes is encoded by distinct, tightly linked SNPs in the ANRIL locus on chromosome 9p. Hum Mol Genet. 2008;17:806–14.

    Article  CAS  PubMed  Google Scholar 

  148. Harismendy O, et al. 9p21 DNA variants associated with coronary artery disease impair interferon-gamma signalling response. Nature. 2011;470:264–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Zhang H, et al. AIP1 functions as an endogenous inhibitor of VEGFR2-mediated signaling and inflammatory angiogenesis in mice. J Clin Invest. 2008;118:3904–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Yu L, et al. AIP1 prevents graft arteriosclerosis by inhibiting interferon-gamma-dependent smooth muscle cell proliferation and intimal expansion. Circ Res. 2011;109:418–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Goldberg NH, Cuono CB, Ariyan S, Enriquez RE. Improved reliability in tumor diagnosis by fine needle aspiration. Plast Reconstr Surg. 1981;67:492–8.

    Article  CAS  PubMed  Google Scholar 

  152. Dryden NH, et al. The transcription factor Erg controls endothelial cell quiescence by repressing activity of nuclear factor (NF)-kappaB p65. J Biol Chem. 2012;287:12331–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Sperone A, et al. The transcription factor Erg inhibits vascular inflammation by repressing NF-kappaB activation and proinflammatory gene expression in endothelial cells. Arterioscler Thromb Vasc Biol. 2011;31:142–50.

    Article  CAS  PubMed  Google Scholar 

  154. Khachigian LM, Fries JW, Benz MW, Bonthron DT, Collins T. Novel cis-acting elements in the human platelet-derived growth factor B-chain core promoter that mediate gene expression in cultured vascular endothelial cells. J Biol Chem. 1994;269:22647–56.

    CAS  PubMed  Google Scholar 

  155. Yuan L, et al. Antiinflammatory effects of the ETS factor ERG in endothelial cells are mediated through transcriptional repression of the interleukin-8 gene. Circ Res. 2009;104:1049–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Du SJ, Tan X, Zhang J. SMYD proteins: key regulators in skeletal and cardiac muscle development and function. Anat Rec (Hoboken). 2014;297:1650–62.

    Article  CAS  Google Scholar 

  157. Qi J, et al. Heat shock protein 90 inhibition by 17-DMAG attenuates abdominal aortic aneurysm formation in mice. Am J Physiol Heart CircPhysiol. 2015;308:H841–52.

    Article  CAS  Google Scholar 

  158. Takai S, et al. Significance of matrix metalloproteinase-9 inhibition by imidapril for prevention of abdominal aortic aneurysms in angiotensin II type 1 receptor-knockout mice. J Pharmacol Sci. 2013;123:185–94.

    Article  CAS  PubMed  Google Scholar 

  159. Wang Q, et al. Inhibition of receptor-interacting protein Kinase 1 with Necrostatin-1s ameliorates disease progression in elastase-induced mouse abdominal aortic aneurysm model. Sci Rep. 2017;7:42159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Cao RY, Amand T, Ford MD, Piomelli U, Funk CD. The Murine Angiotensin II-induced abdominal aortic aneurysm model: rupture risk and inflammatory progression patterns. Front Pharmacol. 2010;1:9.

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Siu KL, et al. NOX isoforms in the development of abdominal aortic aneurysm. Redox Biol. 2017;11:118–25.

    Article  CAS  PubMed  Google Scholar 

  162. Rush C, et al. Whole genome expression analysis within the angiotensin II-apolipoprotein E deficient mouse model of abdominal aortic aneurysm. BMC Genomics. 2009;10:298.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Daugherty A, Manning MW, Cassis LA. Angiotensin II promotes atherosclerotic lesions and aneurysms in apolipoprotein E-deficient mice. J Clin Invest. 2000;105:1605–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Cassis LA, et al. ANG II infusion promotes abdominal aortic aneurysms independent of increased blood pressure in hypercholesterolemic mice. Am J Physiol Heart Circ Physiol. 2009;296:H1660–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Phillips EH, et al. Morphological and biomechanical differences in the elastase and AngIIapoE(−/−) rodent models of abdominal aortic aneurysms. Biomed Res Int. 2015;2015:413189.

    PubMed  PubMed Central  Google Scholar 

  166. Daugherty A, Cassis LA, Lu H. Complex pathologies of angiotensin II-induced abdominal aortic aneurysms. J Zhejiang Univ Sci B. 2011;12:624–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Silence J, Collen D, Lijnen HR. Reduced atherosclerotic plaque but enhanced aneurysm formation in mice with inactivation of the tissue inhibitor of metalloproteinase-1 (TIMP-1) gene. Circ Res. 2002;90:897–903.

    Article  CAS  PubMed  Google Scholar 

  168. Pyo R, et al. Targeted gene disruption of matrix metalloproteinase-9 (gelatinase B) suppresses development of experimental abdominal aortic aneurysms. J Clin Invest. 2000;105:1641–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Lu G, et al. A novel chronic advanced stage abdominal aortic aneurysm murine model. J Vasc Surg. 2017;66:232–242 e234.

    Article  PubMed  PubMed Central  Google Scholar 

  170. Stone JR, et al. Consensus statement on surgical pathology of the aorta from the Society for Cardiovascular Pathology and the Association for European Cardiovascular Pathology: I. Inflammatory diseases. Cardiovasc Pathol. 2015;24:267–78.

    Article  PubMed  Google Scholar 

  171. Dale MA, Ruhlman MK, Baxter BT. Inflammatory cell phenotypes in AAAs: their role and potential as targets for therapy. Arterioscler Thromb Vasc Biol. 2015;35:1746–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Raffort J, et al. Monocytes and macrophages in abdominal aortic aneurysm. Nat Rev Cardiol. 2017;14:457–71.

    Article  PubMed  Google Scholar 

  173. Galkina E, Ley K. Immune and inflammatory mechanisms of atherosclerosis (*). Annu Rev Immunol. 2009;27:165–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Ward MR, Pasterkamp G, Yeung AC, Borst C. Arterial remodeling. Mechanisms and clinical implications. Circulation. 2000;102:1186–91.

    Article  CAS  PubMed  Google Scholar 

  175. Dunne JA, et al. Statins: the holy grail of Abdominal Aortic Aneurysm (AAA) growth attenuation? a systematic review of the literature. Curr Vasc Pharmacol. 2014;12:168–72.

    Article  CAS  PubMed  Google Scholar 

  176. Galinanes EL, Reynolds S, Dombrovskiy VY, Vogel TR. The impact of preoperative statin therapy on open and endovascular abdominal aortic aneurysm repair outcomes. Vascular. 2015;23:344–9.

    Article  CAS  PubMed  Google Scholar 

  177. Wemmelund H, et al. Statin use and rupture of abdominal aortic aneurysm. Br J Surg. 2014;101:966–75.

    Article  CAS  PubMed  Google Scholar 

  178. Wemmelund H. Abdominal aortic aneurysms Pharmacoepidemiological studies. Dan Med J. 2017;64.

    Google Scholar 

  179. Persson SE, Boman K, Wanhainen A, Carlberg B, Arnerlov C. Decreasing prevalence of abdominal aortic aneurysm and changes in cardiovascular risk factors. J Vasc Surg. 2017;65:651–8.

    Article  PubMed  Google Scholar 

  180. Zarrouk M, Lundqvist A, Holst J, Troeng T, Gottsater A. Cost-effectiveness of screening for abdominal aortic aneurysm in combination with medical intervention in patients with small aneurysms. Eur J Vasc Endovasc Surg. 2016;51:766–73.

    Article  CAS  PubMed  Google Scholar 

  181. Lederle FA, et al. Multicentre study of abdominal aortic aneurysm measurement and enlargement. Br J Surg. 2015;102:1480–7.

    Article  CAS  PubMed  Google Scholar 

  182. Golledge J, et al. Challenges and opportunities in limiting abdominal aortic aneurysm growth. J Vasc Surg. 2017;65(1):225–33.

    Article  PubMed  Google Scholar 

  183. Nakayama A, et al. Inverse correlation between calcium accumulation and the expansion rate of abdominal aortic aneurysms. Circ J. 2016;80:332–9.

    Article  PubMed  Google Scholar 

  184. Yu M, et al. Inhibitory effects of doxycycline on the onset and progression of abdominal aortic aneurysm and its related mechanisms. Eur J Pharmacol. 2017;811:101–9.

    Article  CAS  PubMed  Google Scholar 

  185. Nosoudi N, et al. Prevention of abdominal aortic aneurysm progression by targeted inhibition of matrix metalloproteinase activity with batimastat-loaded nanoparticles. Circ Res. 2015;117:e80–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Chen HZ, et al. Age-associated Sirtuin 1 reduction in vascular smooth muscle links vascular senescence and inflammation to abdominal aortic aneurysm. Circ Res. 2016;119:1076–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Tsai SH, et al. Inhibition of hypoxia inducible factor-1alpha attenuates abdominal aortic aneurysm progression through the down-regulation of matrix metalloproteinases. Sci Rep. 2016;6:28612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Moran CS, et al. Parenteral administration of factor Xa/IIa inhibitors limits experimental aortic aneurysm and atherosclerosis. Sci Rep. 2017;7:43079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Maegdefessel L, et al. Inhibition of microRNA-29b reduces murine abdominal aortic aneurysm development. J Clin Invest. 2012;122:497–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Li Y, Maegdefessel L. Non-coding RNA contribution to thoracic and abdominal aortic aneurysm disease development and progression. Front Physiol. 2017;8:429.

    Article  PubMed  PubMed Central  Google Scholar 

  191. Dai X, et al. SMAD3 deficiency promotes vessel wall remodeling, collagen fiber reorganization and leukocyte infiltration in an inflammatory abdominal aortic aneurysm mouse model. Sci Rep. 2015;5:10180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Krueger F, et al. AT1-receptor blockade attenuates outward aortic remodeling associated with diet-induced obesity in mice. Clin Sci (Lond). 2017;131:1989–2005.

    Article  CAS  Google Scholar 

  193. Ghosh A, Pechota A, Coleman D, Upchurch GR Jr, Eliason JL. Cigarette smoke-induced MMP2 and MMP9 secretion from aortic vascular smooth cells is mediated via the Jak/stat pathway. Hum Pathol. 2015;46:284–94.

    Article  CAS  PubMed  Google Scholar 

  194. Lu G, et al. Dietary phytoestrogens inhibit experimental aneurysm formation in male mice. J Surg Res. 2014;188:326–38.

    Article  CAS  PubMed  Google Scholar 

  195. Kaneko H, et al. Resveratrol prevents the development of abdominal aortic aneurysm through attenuation of inflammation, oxidative stress, and neovascularization. Atherosclerosis. 2011;217:350–7.

    Article  CAS  PubMed  Google Scholar 

  196. Lemcke H, et al. Recent progress in stem cell modification for cardiac regeneration. Stem Cells Int. 2018;2018:1909346.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. De R, et al. Bioinformatics challenges in genome-wide association studies (GWAS). Methods Mol Biol. 2014;1168:63–81.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Reed E. Pyeritz and Jeffrey T. Billheimer from the Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, for careful review of the text and very helpful comments.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Roscher, A.A., Dieter, R.A., Raabe, T.D. (2019). Genetics of Aortic Diseases. In: Dieter, R., Dieter Jr., R., Dieter III, R. (eds) Diseases of the Aorta . Springer, Cham. https://doi.org/10.1007/978-3-030-11322-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11322-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11321-6

  • Online ISBN: 978-3-030-11322-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics