Skip to main content

Pathophysiology of Ascending Aortic Aneurysm and Dissection

  • Chapter
  • First Online:
Diseases of the Aorta

Abstract

Type A aortic dissection is a highly lethal event that is often but not always associated with ascending aortic aneurysms. The pathophysiology of ascending aneurysms and dissection differs markedly from that of aneurysms and rupture in other areas of the aorta. The ascending aorta is much less likely to be affected by degenerative changes associated with atherosclerosis and inflammation and more likely to be affected by genetic abnormalities that promote patchy dissolution of medial elastic fibers, apoptosis of smooth muscle cells, and rupture or dissection starting in histologically normal-appearing areas. The development of type A dissections and ascending aneurysms is discussed in relation to biomechanics of the ascending aorta, developmental biology, micromechanics of aortic composite structure, microscopic and ultrastructural features of dissections and aneurysms, and biomechanics of pathologic ascending aortas. Ten postulates are offered describing pathophysiologic features of aneurysms and dissections. Dissection is a disease of collagen fibers. Aneurysms are a disease of elastic fibers. Both are strongly associated with hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berretta P, et al. IRAD experience on surgical type A acute dissection patients: results and predictors of mortality. Ann Cardiothorac Surg. 2016;5(4):346–51.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Howard DP, et al. Population-based study of incidence and outcome of acute aortic dissection and premorbid risk factor control: 10-year results from the Oxford Vascular Study. Circulation. 2013;127(20):2031–7.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Shadwick RE. Mechanical design in arteries. J Exp Biol. 1999;202(Pt 23):3305–13.

    CAS  PubMed  Google Scholar 

  4. Frank O. Die Grundform des arteriellen pulses. Zeitung fur Biologie. 1899;37:483–526.

    Google Scholar 

  5. Stergiopulos N, Westerhof BE, Westerhof N. Total arterial inertance as the fourth element of the windkessel model. Am J Phys. 1999;276(1 Pt 2):H81–8.

    CAS  Google Scholar 

  6. Maksuti E, et al. Contribution of the arterial system and the heart to blood pressure during normal aging - a simulation study. PLoS One. 2016;11(6):e015–7493.

    Article  CAS  Google Scholar 

  7. Sherratt MJ. Tissue elasticity and the ageing elastic fibre. Age (Dordr). 2009;31(4):305–25.

    Article  CAS  Google Scholar 

  8. Garcia-Herrera CM, et al. Mechanical behaviour and rupture of normal and pathological human ascending aortic wall. Med Biol Eng Comput. 2012;50(6):559–66.

    Article  CAS  PubMed  Google Scholar 

  9. Shah SB, et al. Prefailure and failure mechanics of the porcine ascending thoracic aorta: experiments and a multiscale model. J Biomech Eng. 2014;136(2):021028.

    Article  PubMed  Google Scholar 

  10. Guo X, Kassab GS. Variation of mechanical properties along the length of the aorta in C57bl/6 mice. Am J Physiol Heart Circ Physiol. 2003;285(6):H2614–22.

    Article  CAS  PubMed  Google Scholar 

  11. Wagenseil JE, Mecham RP. Vascular extracellular matrix and arterial mechanics. Physiol Rev. 2009;89(3):957–89.

    Article  CAS  PubMed  Google Scholar 

  12. Okamoto RJ, et al. The influence of mechanical properties on wall stress and distensibility of the dilated ascending aorta. J Thorac Cardiovasc Surg. 2003;126(3):842–50.

    Article  PubMed  Google Scholar 

  13. Dobrin PB. Mechanical properties of arteries. Physiol Rev. 1978;58(2):397–460.

    Article  CAS  PubMed  Google Scholar 

  14. Beller CJ, et al. Role of aortic root motion in the pathogenesis of aortic dissection. Circulation. 2004;109(6):763–9.

    Article  PubMed  Google Scholar 

  15. Jager IL. A model for the stability and creep of organic materials. J Biomech. 2005;38(7):1459–67.

    Article  PubMed  Google Scholar 

  16. Chu B, et al. Characterization of fracture toughness exhaustion in pig aorta. J Mech Behav Biomed Mater. 2013;17:126–36.

    Article  PubMed  Google Scholar 

  17. Gunning GM, Murphy BP. Characterisation of the fatigue life, dynamic creep and modes of damage accumulation within mitral valve chordae tendineae. Acta Biomater. 2015;24:193–200.

    Article  PubMed  Google Scholar 

  18. Pfaltzgraff ER, et al. Embryonic domains of the aorta derived from diverse origins exhibit distinct properties that converge into a common phenotype in the adult. J Mol Cell Cardiol. 2014;69:88–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jiang X, et al. Fate of the mammalian cardiac neural crest. Development. 2000;127(8):1607–16.

    CAS  PubMed  Google Scholar 

  20. Cheung C, et al. Generation of human vascular smooth muscle subtypes provides insight into embryological origin-dependent disease susceptibility. Nat Biotechnol. 2012;30(2):165–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Majesky MW. Developmental basis of vascular smooth muscle diversity. Arterioscler Thromb Vasc Biol. 2007;27(6):1248–58.

    Article  CAS  PubMed  Google Scholar 

  22. Haar JL, Ackerman GA. A phase and electron microscopic study of vasculogenesis and erythropoiesis in the yolk sac of the mouse. Anat Rec. 1971;170(2):199–223.

    Article  CAS  PubMed  Google Scholar 

  23. Huber TL, et al. Haemangioblast commitment is initiated in the primitive streak of the mouse embryo. Nature. 2004;432(7017):625–30.

    Article  CAS  PubMed  Google Scholar 

  24. Kennedy M, et al. Development of the hemangioblast defines the onset of hematopoiesis in human ES cell differentiation cultures. Blood. 2007;109(7):2679–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Siekmann AF, et al. Chemokine signaling guides regional patterning of the first embryonic artery. Genes Dev. 2009;23(19):2272–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Quillien A, et al. Distinct Notch signaling outputs pattern the developing arterial system. Development. 2014;141(7):1544–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yamashita J, et al. Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature. 2000;408(6808):92–6.

    Article  CAS  PubMed  Google Scholar 

  28. Waldo KL, et al. Secondary heart field contributes myocardium and smooth muscle to the arterial pole of the developing heart. Dev Biol. 2005;281(1):78–90.

    Article  CAS  PubMed  Google Scholar 

  29. Dyer LA, Kirby ML. The role of secondary heart field in cardiac development. Dev Biol. 2009;336(2):137–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Maleki S, et al. Mesenchymal state of intimal cells may explain higher propensity to ascending aortic aneurysm in bicuspid aortic valves. Sci Rep. 2016;6:35712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. McDonald OG, et al. Control of SRF binding to CArG box chromatin regulates smooth muscle gene expression in vivo. J Clin Invest. 2006;116(1):36–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Oh J, Richardson JA, Olson EN. Requirement of myocardin-related transcription factor-B for remodeling of branchial arch arteries and smooth muscle differentiation. Proc Natl Acad Sci U S A. 2005;102(42):15122–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pardali E, Ten Dijke P. TGFb signaling and cardiovascular diseases. Int J Biol Sci. 2012;8(2):195–213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kitisin K, et al. Tgf-Beta signaling in development. Sci STKE. 2007;2007(399):cm1.

    Article  PubMed  Google Scholar 

  35. Mu Y, Gudey SK, Landstrom M. Non-Smad signaling pathways. Cell Tissue Res. 2012;347(1):11–20.

    Article  CAS  PubMed  Google Scholar 

  36. Lauring J, Park BH, Wolff AC. The phosphoinositide-3-kinase-Akt-mTOR pathway as a therapeutic target in breast cancer. J Natl Compr Cancer Netw. 2013;11(6):670–8.

    Article  CAS  Google Scholar 

  37. ten Dijke P, Arthur HM. Extracellular control of TGFb signalling in vascular development and disease. Nat Rev Mol Cell Biol. 2007;8(11):857–69.

    Article  CAS  PubMed  Google Scholar 

  38. Teekakirikul P, et al. Thoracic aortic disease in two patients with juvenile polyposis syndrome and SMAD4 mutations. Am J Med Genet A. 2013;161A(1):185–91.

    Article  CAS  PubMed  Google Scholar 

  39. Cannaerts E, et al. TGF-beta signalopathies as a paradigm for translational medicine. Eur J Med Genet. 2015;58(12):695–703.

    Article  PubMed  Google Scholar 

  40. Zilberberg L, et al. Genetic analysis of the contribution of LTBP-3 to thoracic aneurysm in Marfan syndrome. Proc Natl Acad Sci U S A. 2015;112(45):14012–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Andelfinger G, Loeys B, Dietz H. A decade of discovery in the genetic understanding of thoracic aortic disease. Can J Cardiol. 2016;32(1):13–25.

    Article  PubMed  Google Scholar 

  42. Topouzis S, Majesky MW. Smooth muscle lineage diversity in the chick embryo. Two types of aortic smooth muscle cell differ in growth and receptor-mediated transcriptional responses to transforming growth factor-beta. Dev Biol. 1996;178(2):430–45.

    Article  CAS  PubMed  Google Scholar 

  43. Wolinsky H, Glagov S. Comparison of abdominal and thoracic aortic medial structure in mammals. Deviation of man from the usual pattern. Circ Res. 1969;25(6):677–86.

    Article  CAS  PubMed  Google Scholar 

  44. Majesky MW. Adventitia and perivascular cells. Arterioscler Thromb Vasc Biol. 2015;35(8):e31–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dingemans KP, et al. Extracellular matrix of the human aortic media: an ultrastructural histochemical and immunohistochemical study of the adult aortic media. Anat Rec. 2000;258(1):1–14.

    Article  CAS  PubMed  Google Scholar 

  46. Majesky MW, et al. The adventitia: a dynamic interface containing resident progenitor cells. Arterioscler Thromb Vasc Biol. 2011;31(7):1530–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Muiznieks LD, Keeley FW. Molecular assembly and mechanical properties of the extracellular matrix: a fibrous protein perspective. Biochim Biophys Acta. 2013;1832(7):866–75.

    Article  CAS  PubMed  Google Scholar 

  48. Jensen SA, Robertson IB, Handford PA. Dissecting the fibrillin microfibril: structural insights into organization and function. Structure. 2012;20(2):215–25.

    Article  CAS  PubMed  Google Scholar 

  49. Sengle G, Sakai LY. The fibrillin microfibril scaffold: a niche for growth factors and mechanosensation? Matrix Biol. 2015;47:3–12.

    Article  CAS  PubMed  Google Scholar 

  50. Cecchi A, et al. Missense mutations in FBN1 exons 41 and 42 cause Weill-Marchesani syndrome with thoracic aortic disease and Marfan syndrome. Am J Med Genet A. 2013;161A(9):2305–10.

    Article  PubMed  CAS  Google Scholar 

  51. Doyle JJ, et al. A deleterious gene-by-environment interaction imposed by calcium channel blockers in Marfan syndrome. Elife. 2015:4.

    Google Scholar 

  52. Koenders MM, et al. Microscale mechanical properties of single elastic fibers: the role of fibrillin-microfibrils. Biomaterials. 2009;30(13):2425–32.

    Article  CAS  PubMed  Google Scholar 

  53. Sherratt MJ, et al. Fibrillin microfibrils are stiff reinforcing fibres in compliant tissues. J Mol Biol. 2003;332(1):183–93.

    Article  CAS  PubMed  Google Scholar 

  54. Kielty CM, Sherratt MJ, Shuttleworth CA. Elastic fibres. J Cell Sci. 2002;115(Pt 14):2817–28.

    CAS  PubMed  Google Scholar 

  55. Merla G, et al. Supravalvular aortic stenosis: elastin arteriopathy. Circ Cardiovasc Genet. 2012;5(6):692–6.

    Article  CAS  PubMed  Google Scholar 

  56. Bax DV, et al. Cell adhesion to tropoelastin is mediated via the C-terminal GRKRK motif and integrin alphaVbeta3. J Biol Chem. 2009;284(42):28616–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Treloar LRG. The physics of rubber elasticity / by L.R.G. Treloar, Oxford classic texts in the physical sciences. 3rd ed. Oxford, New York: Clarendon Press; Oxford University Press; 2005. xii, 310 p.

    Google Scholar 

  58. Chung J, et al. Energy loss, a novel biomechanical parameter, correlates with aortic aneurysm size and histopathologic findings. J Thorac Cardiovasc Surg. 2014;148(3):1082–8; discussion 1088–9

    Article  PubMed  Google Scholar 

  59. Shalhub S, et al. Molecular diagnosis in vascular Ehlers-Danlos syndrome predicts pattern of arterial involvement and outcomes. J Vasc Surg. 2014;60(1):160–9.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Jain D, et al. Causes and histopathology of ascending aortic disease in children and young adults. Cardiovasc Pathol. 2011;20(1):15–25.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Owens GK, Kumar MS, Wamhoff BR. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev. 2004;84(3):767–801.

    Article  CAS  PubMed  Google Scholar 

  62. Karimi A, Milewicz DM. Structure of the elastin-contractile units in the thoracic aorta and how genes that cause thoracic aortic aneurysms and dissections disrupt this structure. Can J Cardiol. 2016;32(1):26–34.

    Article  PubMed  Google Scholar 

  63. Guo DC, et al. Mutations in smooth muscle alpha-actin (ACTA2) cause coronary artery disease, stroke, and Moyamoya disease, along with thoracic aortic disease. Am J Hum Genet. 2009;84(5):617–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wang L, et al. Mutations in myosin light chain kinase cause familial aortic dissections. Am J Hum Genet. 2010;87(5):701–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Loeys BL, et al. Aneurysm syndromes caused by mutations in the TGF-beta receptor. N Engl J Med. 2006;355(8):788–98.

    Article  CAS  PubMed  Google Scholar 

  66. Chen X, et al. TGF-beta neutralization enhances AngII-induced aortic rupture and aneurysm in both thoracic and abdominal regions. PLoS One. 2016;11(4):e0153811.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Lacro RV, et al. Atenolol versus losartan in children and young adults with Marfan’s syndrome. N Engl J Med. 2014;371(22):2061–71.

    Google Scholar 

  68. Wang C, et al. Angiotensin II induces an increase in MMP-2 expression in idiopathic ascending aortic aneurysm via AT1 receptor and JNK pathway. Acta Biochim Biophys Sin Shanghai. 2015;47(7):539–47.

    Article  CAS  PubMed  Google Scholar 

  69. Nastase MV, Young MF, Schaefer L. Biglycan: a multivalent proteoglycan providing structure and signals. J Histochem Cytochem. 2012;60(12):963–75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Schaefer L, Iozzo RV. Biological functions of the small leucine-rich proteoglycans: from genetics to signal transduction. J Biol Chem. 2008;283(31):21305–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Corsi A, et al. Phenotypic effects of biglycan deficiency are linked to collagen fibril abnormalities, are synergized by decorin deficiency, and mimic Ehlers-Danlos-like changes in bone and other connective tissues. J Bone Miner Res. 2002;17(7):1180–9.

    Article  CAS  PubMed  Google Scholar 

  72. Heegaard AM, et al. Biglycan deficiency causes spontaneous aortic dissection and rupture in mice. Circulation. 2007;115(21):2731–8.

    Article  CAS  PubMed  Google Scholar 

  73. Meester JA, et al. Loss-of-function mutations in the X-linked biglycan gene cause a severe syndromic form of thoracic aortic aneurysms and dissections. Genet Med. 2017;19(4):386–95.

    Article  CAS  PubMed  Google Scholar 

  74. Geerkens C, et al. The X-chromosomal human biglycan gene BGN is subject to X inactivation but is transcribed like an X-Y homologous gene. Hum Genet. 1995;96(1):44–52.

    Article  CAS  PubMed  Google Scholar 

  75. Carlson M, et al. Moderate aortic enlargement and bicuspid aortic valve are associated with aortic dissection in Turner syndrome: report of the international turner syndrome aortic dissection registry. Circulation. 2012;126(18):2220–6.

    Article  PubMed  Google Scholar 

  76. Hagman A, et al. Morbidity and mortality after childbirth in women with Turner karyotype. Hum Reprod. 2013;28(7):1961–73.

    Article  CAS  PubMed  Google Scholar 

  77. Homme JL, et al. Surgical pathology of the ascending aorta: a clinicopathologic study of 513 cases. Am J Surg Pathol. 2006;30(9):1159–68.

    Article  PubMed  Google Scholar 

  78. Dingemans KP, et al. Ultrastructural pathology of aortic dissections in patients with Marfan syndrome: comparison with dissections in patients without Marfan syndrome. Cardiovasc Pathol. 2006;15(4):203–12.

    Article  PubMed  Google Scholar 

  79. Coady MA, et al. Surgical intervention criteria for thoracic aortic aneurysms: a study of growth rates and complications. Ann Thorac Surg. 1999;67(6):1922–6; discussion 1953–8.

    Article  CAS  PubMed  Google Scholar 

  80. Davies RR, et al. Yearly rupture or dissection rates for thoracic aortic aneurysms: simple prediction based on size. Ann Thorac Surg. 2002;73(1):17–27; discussion 27–8.

    Article  PubMed  Google Scholar 

  81. Koullias G, et al. Mechanical deterioration underlies malignant behavior of aneurysmal human ascending aorta. J Thorac Cardiovasc Surg. 2005;130(3):677–83.

    Article  PubMed  Google Scholar 

  82. Pape LA, et al. Aortic diameter >or = 5.5 cm is not a good predictor of type A aortic dissection: observations from the International Registry of Acute Aortic Dissection (IRAD). Circulation. 2007;116(10):1120–7.

    Article  PubMed  Google Scholar 

  83. Paruchuri V, et al. Aortic size distribution in the general population: explaining the size paradox in aortic dissection. Cardiology. 2015;131(4):265–72.

    Article  PubMed  Google Scholar 

  84. Landenhed M, et al. Risk profiles for aortic dissection and ruptured or surgically treated aneurysms: a prospective cohort study. J Am Heart Assoc. 2015;4(1):e001513.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Poullis MP, et al. Ascending aortic curvature as an independent risk factor for type A dissection, and ascending aortic aneurysm formation: a mathematical model. Eur J Cardiothorac Surg. 2008;33(6):995–1001.

    Article  PubMed  Google Scholar 

  86. Kruger T, et al. Ascending aortic elongation and the risk of dissection. Eur J Cardiothorac Surg. 2016;50(2):241–7.

    Article  PubMed  Google Scholar 

  87. Thubrikar MJ, Agali P, Robicsek F. Wall stress as a possible mechanism for the development of transverse intimal tears in aortic dissections. J Med Eng Technol. 1999;23(4):127–34.

    Article  CAS  PubMed  Google Scholar 

  88. Fung YC, Fronek K, Patitucci P. Pseudoelasticity of arteries and the choice of its mathematical expression. Am J Phys. 1979;237(5):H620–31.

    CAS  Google Scholar 

  89. Martin C, Sun W, Elefteriades J. Patient-specific finite element analysis of ascending aorta aneurysms. Am J Physiol Heart Circ Physiol. 2015;308(10):H1306–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Thunes JR, et al. A structural finite element model for lamellar unit of aortic media indicates heterogeneous stress field after collagen recruitment. J Biomech. 2016;49(9):1562–9.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Ziganshin BA, Bailey AE, Coons C, Dykas D, et al. Routine genetic testing for thoracic aortic aneurysm and dissection in clinical setting. Ann Thorac Surg. 2015;100(5):1604–11.

    Article  PubMed  Google Scholar 

  92. Tsilou E, MacDonald IM. Weill-Marchesani syndrome. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, LJH B, Mefford HC, Stephens K, Amemiya A, Ledbetter N, editors. SourceGeneReviews® [Internet]. Seattle: University of Washington, Seattle; 1993–2017. 2007 Nov 1 [updated 2013 Feb 14].

    Google Scholar 

  93. Loeys-Dietz Syndrome. Genetics Home Reference 2014 12/21/16 [cited 2016 December 25]. Available from: https://ghr.nlm.nih.gov/condition/loeys-dietz-syndrome#sourcesforpage.

  94. Loeys BL, Schwarze U, Holm T, Callewaert BL, et al. Aneurysm syndromes caused by mutations in the tgfb receptor. N Engl J Med. 2006;355(8):788–98.

    Article  CAS  PubMed  Google Scholar 

  95. Schwartz RA. Ehlers-Danlos Syndrome. Medscape, 2016. Available at: https://emedicine.medscape.com/article/1114004-overview.

  96. Shprintzen RJ, Goldberg RB. A recurrent pattern syndrome of craniosynostosis associated with arachnodactyly and abdominal hernias. J Craniofac Genet Dev Biol. 1982;2(1):65–74.

    CAS  PubMed  Google Scholar 

  97. Isselbacher EM, Lino Cardenas CL, Lindsay ME. Hereditary influence in thoracic aortic aneurysms and dissection. Circulation. 2016;133(24):2516–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Bondy CA. Aortic dissection in Turner syndrome. Curr Opin Cardiol. 2008;23(6):519–26.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Renard M, Holm T, Veith R, Callewaert BL, et al. Altered TGFbeta signaling and cardiovascular manifestations in patients with autosomal recessive cutis laxa type I caused by fibulin-4 deficiency. Eur J Hum Genet. 2010;18(8):895–901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kashtan CE, Segal Y, Flinter F, Makanjuola D, Gan JS, Watnick T. Aortic abnormalities in males with Alport syndrome. Nephrol Dial Transplant. 2010;25(11):3554–60.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Wetzel-Strong SE, Detter MR, Marchuk DA. The pathobiology of vascular malformations: insights from human and model organism genetics. J Pathol. 2017;241(2):281–93.

    Article  PubMed  Google Scholar 

  102. Tzemos N, Lyseggen E, Silversides C, Jamorski M, Tong JH, Harvey P, Floras J, Siu S. Endothelial function, carotid-femoral stiffness, and plasma matrix metalloproteinase-2 in men with bicuspid aortic valve and dilated aorta. J Am Coll Cardiol. 2010;55(7):660–8.

    Article  CAS  PubMed  Google Scholar 

  103. Sievers HH, Schmidtke C. A classification system for the bicuspid aortic valve from 304 surgical specimens. J Thorac Cardiovasc Surg. 2007;133(5):1226–33.

    Article  PubMed  Google Scholar 

  104. Russo CF, Cannata A, Lanfranconi M, Vitali E, Garatti A, Bonacina E. Is aortic wall degeneration related to bicuspid aortic valve anatomy in patients with valvular disease? J Thorac Cardiovasc Surg. 2008;136(4):937–42.

    Article  PubMed  Google Scholar 

  105. Ostberg JE, Brookes JAS, McCarthy C, Halcox J, Conway GS. A comparison of echocardiography and magnetic resonance imaging in cardiovascular screening of adults with turner syndrome. J Clin Endocrinol Metab. 2004;89(12):5966–71.

    Article  CAS  PubMed  Google Scholar 

  106. Renard M, Holm T, Veith R, Callewaert BL, Adès LC, Baspinar O, Pickart A, Dasouki M, Hoyer J, Rauch A, Trapane P, Earing MG, Coucke PJ, Sakai LY, Dietz HC, De Paepe AM, Loeys BL. Altered TGFβ signaling and cardiovascular manifestations in patients with autosomal recessive cutis laxa type I caused by fibulin-4 deficiency. Eur J Hum Genet. 2010;18(8):895–901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Guo D-C, Papke CL, Tran-Fadulu V, Regalado ES, Avidan N, Johnson RJ, Kim DH, Pannu H, Willing MC, Sparks E, Pyeritz RE, Singh MN, Dalman RL, Grotta JC, Marian AJ, Boerwinkle EA, Frazier LQ, LeMaire SA, Coselli JS, Estrera AL, Safi HJ, Veeraraghavan S, Muzny DM, Wheeler DA, Willerson JT, Yu RK, Shete SS, Scherer SE, Raman CS, Buja LM, Milewicz DM. Mutations in smooth muscle alpha-actin (ACTA2) cause coronary artery disease, stroke, and Moyamoya disease, along with thoracic aortic disease. Am J Hum Genet. 2009;84(5):617–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gaines, T.E., Grimsley, L.B. (2019). Pathophysiology of Ascending Aortic Aneurysm and Dissection. In: Dieter, R., Dieter Jr., R., Dieter III, R. (eds) Diseases of the Aorta . Springer, Cham. https://doi.org/10.1007/978-3-030-11322-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11322-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11321-6

  • Online ISBN: 978-3-030-11322-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics