Skip to main content

Mesozoic and Cenozoic Magmatism in the Betics

  • Chapter
  • First Online:
The Geology of Iberia: A Geodynamic Approach

Abstract

Metamorphosed mafic igneous rocks (blueschists and eclogites) of the Nevado-Filábride Complex mainly occur as subparallel, multiple-injection dikes crosscutting shallow marine, Permo-Triassic metasediments or, locally, metaperidotites (rodingites). Radiometric data yields magmatic ages for zircons at around 185 ± 3 Ma. Chemical data indicate an E-MORB affinity of the melt. A continental or oceanic-continental transition setting is proposed for this magmatism. On the other hand, the volcanic region of SE Spain developed from 15 to 2.8 Ma producing four main groups of rocks: crustal contaminated, mantle derived, calc-alcaline andesitic to rhyolitic series; peraluminous volcanic rocks formed by anatectic processes of crustal sources; small ultrapotassic (lamproite) volcanic centres and intraplate alkaline basalts and basanites. Most models have explained this volcanism in relation to subduction processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acosta-Vigil A, Cesare B, London D, Morgan VI GB (2007) Microstructures and composition of melt inclusions in a crustal anatectic environment, represented by metapelitic enclaves within El Hoyazo dacites, SE Spain. Chem Geol 235:450–465

    Article  Google Scholar 

  • Acosta-Vigil A, Buick I, Hermann J, Cesare B, Rubatto D, London D, Morgan VI GB (2010) Mechanisms of crustal anatexis: a geochemical study of partially melted metapelitic enclaves and host dacite, SE Spain. J Petrol 51:785–821

    Article  Google Scholar 

  • Acosta-Vigil A, Buick I, Cesare B, London D, Morgan VI GB (2012) The extent of equilibration between melt and residuum during regional anatexis and its implications for differentiation of the continental crust: a study of partially melted metapelitic enclaves. J Petrol 53:1319– 1356

    Article  Google Scholar 

  • Álvarez-Valero A, Kriegsman LM (2007) Crustal thinning and mafic underplating beneath the Neogene Volcanic Province (Betic Cordillera, SE Spain): evidence from crustal xenoliths. Terra Nova 19:266–271

    Article  Google Scholar 

  • Álvarez-Valero AM, Kriegsman LM (2008) Partial crustal melting beneath the Betic Cordillera (SE Spain): the case study of Mar Menor volcanic suite. Lithos 101: 379–396

    Article  Google Scholar 

  • Álvarez-Valero AM, Waters DJ (2010) Partially melted crustal xenoliths as a window into sub-volcanic processes: evidence from the Neogene Magmatic Province of the Betic Cordillera, SE Spain. J Petrol 51:973–991

    Article  Google Scholar 

  • Álvarez-Valero AM, Cesare B, Kriegsman LM (2005) P-T paths in crustal enclaves: Examples from the Neogene Volcanic Province, Spain. Geochim Cosmochim Acta 68: A665-A665 Suppl. S

    Google Scholar 

  • Álvarez-Valero AM, Cesare B, Kriegsman LM (2007) Formation of melt-bearing spinel–cordierite–feldspars coronas after garnet in metapelitic xenoliths. Reaction modelling and geodynamic implications. J metamorphic Geol 25:305–320

    Article  Google Scholar 

  • Álvarez-Valero AM, Pla F, Kriegsman LM, Geyer A, Herrero H (2015) Observing silicic magma transport in dikes at depths of 8–19 km: evidences from crustal xenoliths and numerical modelling. J Volcanol Geotherm Res 296:69–79. https://doi.org/10.1016/j.jvolgeores.2015.02.013

    Article  Google Scholar 

  • Álvarez-Valero AM, Okumura S, Arzilli F, Borrajo J, Recio C, Ban M, Gonzalo JC, Benítez JM, Douglas M, Sasaki O, Franco P, Gómez-Barreiro J, Carnicero A (2016) Tracking bubble evolution inside a silicic dike Lithos 262:668–676. https://doi.org/10.1016/j.lithos.2016.08.012

    Article  Google Scholar 

  • Araña V, Vegas R (1974) Plate tectonics and volcanism in the gibraltar arc. Tectonophysics 24 (3):197–212. https://doi.org/10.1016/0040-1951(74)90008-0

    Article  Google Scholar 

  • Arai S, Shimizu Y, Gervilla F (2003) Quartz diorite veins in a peridotite xenolith from Tallante, Spain: implications for reaction and survival of slab-derived SiO2-oversaturated melt in the upper mantle. Proceedings of the Japan Academy, Series B 79B (6):145–150. https://doi.org/10.2183/pjab.79b.145

    Article  Google Scholar 

  • Arribas A (1993) Mapa Geológico del distrito minero de Rodalquilar, Almería. Instituto Tecnológico Geominero de España, Madrid

    Google Scholar 

  • Arribas A, Cunningham CG, Rytuba JJ, Rye RO, Kelly WC, Podwysocki MH, Mckee EH, Tosdal RM (1995) Geology, Geochronology, Fluid Inclusions, and Isotope Geochemistry of the Rodalquilar Gold Alunite Deposit, Spain. Econ Geol Bull Soc 90 (4):795–822. https://doi.org/10.2113/gsecongeo.90.4.795

    Article  Google Scholar 

  • Beccaluva L, Bianchini G, Bonadiman C, Siena F, Vaccaro C (2004) Coexisting anorogenic and subduction-related metasomatism in mantle xenoliths from the Betic Cordillera (southern Spain). Lithos 75 (1–2):67-87. https://doi.org/10.1016/j.lithos.2003.12.015

    Article  Google Scholar 

  • Bellon H, Bordet P, Montenat C (1983) Chronologie du magmatisme néogène des Cordillères bétiques (Espagne méridionale). Bull Soc geol Fr. (7) 25 (2):205–217

    Google Scholar 

  • Benito R, López-Ruiz J, Cebriá JM, Hertogen J, Doblas M, Oyarzun R, Demaiffe D (1999) Sr and O isotope constraints on source and crustal contamination in the high-K calc-alkaline and shoshonitic neogene volcanic rocks of SE Spain. Lithos 46 (4):773–802. https://doi.org/10.1016/s0024-4937(99)00003-1

    Article  Google Scholar 

  • Bianchini G, Beccaluva L, Nowell GM, Pearson DG, Siena F (2011) Mantle xenoliths from Tallante (Betic Cordillera): Insights into the multi-stage evolution of the south Iberian lithosphere. Lithos 124 (3–4):308-318. https://doi.org/10.1016/j.lithos.2010.12.004

    Article  Google Scholar 

  • Bianchini G, Braga R, Langone A, Natali C, Tiepolo M (2015) Metasedimentary and igneous xenoliths from Tallante (Betic Cordillera, Spain): Inferences on crust-mantle interactions and clues for post-collisional volcanism magma sources. Lithos 220–223:191-199. https://doi.org/10.1016/j.lithos.2015.02.011

    Article  Google Scholar 

  • Blanco MJ, Spakman W (1993) The P-Wave Velocity Structure of the Mantle Below the Iberian Peninsula - Evidence for Subducted Lithosphere Below Southern Spain. Tectonophysics 221 (1):13–34. https://doi.org/10.1016/0040-1951(93)90025-f

    Article  Google Scholar 

  • Bodinier JL, Morten L, Puga E, Díaz de Federico A (1987) Geochemistry of metabasites from the Nevado-Filábride Complex. Betic Cordilleras, Spain: relics of a dismembered ophiolitic sequence. Lithos 20: 235–245

    Article  Google Scholar 

  • Boivin PA (1982) Interactions entre magmas basaltiques en manteau supérieur. Exemple du Devès (Massif Central français) et du volcanisme quaternaire de la région de Carthagène (Espagne). These d’Etat, Univ. Clermont Ferrand,

    Google Scholar 

  • Bonatti E, Honnorez J (1976) Sections of the Earth’s crust in the Equatorial Atlantic. J Geophys Res 81: 4087–4103

    Article  Google Scholar 

  • Bordet P (1985) Le volcanisme miocène des Sierras de Gata et de Carboneras (Espagne du Sud-Est). Doc et Trav IGAL 8. Paris

    Google Scholar 

  • Cambeses A, Scarrow JH (2013) Ultrapotassic volcanic centres as potential paleogeographic indicators: The Mediterranean Tortonian ‘salinity crisis’, southern Spain. Geol Acta 11 (3):295–310. https://doi.org/10.1344/105.000001860

    Article  Google Scholar 

  • Cambeses A, García-Casco A, Scarrow JH (2013) Magmas mantélicos a través de un complejo anatéctico: evidencias texturales y composicionales de micas en lamproitas de la región neógena volcánica del sureste de España. Geogaceta 54:55–58

    Google Scholar 

  • Cambeses A, García-Casco A, Scarrow JH, Montero P, Pérez-Valera LA, Bea F (2016) Mineralogical evidence for lamproite magma mixing and storage at mantle depths: Socovos fault lamproites, SE Spain. Lithos 266–267:182-201. https://doi.org/10.1016/j.lithos.2016.10.006

    Article  Google Scholar 

  • Capedri S, Venturelli G, Salvioli-Mariani E, Crawford AJ, Barbieri M (1989) Upper-Mantle xenoliths and megacrysts in an alkali basalt from Tallante, South-eastern Spain. Eur J Mineral 1:685–699

    Article  Google Scholar 

  • Carminati E, Wortel MJR, Spakman W, Sabadini R (1998) The role of slab detachment processes in the opening of the western–central Mediterranean basins: some geological and geophysical evidence. Earth Planet Sci Lett 160 (3–4):651–665. http://dx.doi.org/10.1016/S0012-821X(98)00118-6

    Article  Google Scholar 

  • Cas RAF, Giordano G (2014) Submarine volcanism: A review of the constraints, processes and products, and relevance to the Cabo de Gata volcanic succession. Ital J Geosci 133 (3):362–377. https://doi.org/10.3301/ijg.2014.46

    Article  Google Scholar 

  • Cebriá JM, López-Ruiz J, Carmona J, Doblas M (2009) Quantitative petrogenetic constraints on the Pliocene alkali basaltic volcanism of the SE Spain Volcanic Province. Journal of Volcanology and Geothermal Research 185 (3):172–180. https://doi.org/10.1016/j.jvolgeores.2009.05.008

    Article  Google Scholar 

  • Cesare B (2008) Crustal melting: working with enclaves. In: Working with Migmatites. (eds): EW Sawyer, M Brown. Mineralogical Association of Canada, Quebec City, Short Course 38:37–55

    Google Scholar 

  • Cesare B, Gómez-Pugnaire MT (2001) Crustal melting in the Alborán domain: constraints from the xenoliths of the Neogene Volcanic Province. Phys Chem Earth (A) 26:255–260

    Article  Google Scholar 

  • Cesare B, Salvioli Mariani E, Venturelli G (1997) Crustal anatexis and melt segregation in the restitic xenoliths at El Hoyazo (SE Spain). Mineral Mag 61:15–27

    Article  Google Scholar 

  • Cesare B, Marchesi C, Hermann J, Gómez-Pugnaire MT (2003a) Primary melt inclusions in andalusite from anatectic graphitic metapelites: implications for the position of the Al2SiO5 triple point. Geology 31:573–576

    Article  Google Scholar 

  • Cesare B, Gómez-Pugnaire MT, Rubatto D (2003b) Residence time of S-type anatectic magmas beneath the Neogene Volcanic Province of SE Spain: a zircon and monazite SHRIMP study. Contrib Mineral Petrol 146:28–43. https://doi.org/10.1007/s00410-003-0490-x

    Article  Google Scholar 

  • Cesare B, Meli S, Nodari L, Russo U (2005) Fe3+ reduction during biotite melting in graphitic metapelites: another origin of CO2 in granulites. Contrib Mineral Petrol 149:129–140

    Article  Google Scholar 

  • Cesare B, Maineri C, Baron Toaldo A, Pedron D, Acosta-Vigil A (2007) Immiscibility between carbonic fluids and granitic melts during crustal anatexis: a fluid and melt inclusion study in the enclaves of the Neogene Volcanic Province of SE Spain. Chem Geol 237:433–449

    Article  Google Scholar 

  • Cesare B, Ferrero S, Salvioli-Mariani E, Pedron D, Cavallo A (2009) Nanogranite and glassy inclusions: the anatectic melt in migmatites and granulites. Geology 37:627–630

    Article  Google Scholar 

  • Cesare B, Acosta-Vigil A, Ferrero S, Bartoli O (2011) Melt inclusions in migmatites and granulites. In: The Science of Microstructure - Part II. MA Forster and JD Fitz Gerald (eds): Journal of Virtual Explorer, 38, paper 2, Electronic edition

    Google Scholar 

  • Conticelli S, Guarnieri L, Farinelli A, Mattei M, Avanzinelli R, Bianchini G, Boari E, Tommasini S, Tiepolo M, Prelevic D, Venturelli G (2009) Trace elements and Sr-Nd-Pb isotopes of K-rich, shoshonitic, and calc-alkaline magmatism of the Western Mediterranean Region: Genesis of ultrapotassic to calc-alkaline magmatic associations in a post-collisional geodynamic setting. Lithos 107:68–92. https://doi.org/10.1016/j.lithos.2008.07.016

    Article  Google Scholar 

  • Contini S, Venturelli G, Toscani L, Capedri S, Barbieri M (1993) Cr-Zr-Armalcolite-Bearing Lamproites of Cancarix, Se Spain. Mineral Mag 57 (387):203–216. https://doi.org/10.1180/minmag.1993.057.387.02

    Article  Google Scholar 

  • Cunningham CG, Arribas A, Rytuba JJ, Arribas A (1990) Mineralized and unmineralized calderas in Spain; Part I, evolution of the Los Frailes Caldera. Miner Depos 25 (1):S21-S28. https://doi.org/10.1007/bf00205246

    Article  Google Scholar 

  • De Jong K, Bakker HE (1991) The Mulhacen and Alpujarride Complex in the Sierra de los Filabres, SE Spain: lithostratigraphy. Geol Mijnbouw 70: 93–103

    Google Scholar 

  • De Larouzière FD (1985) Étude tectono-sédimentaire et magmatique des bassins néogènes d’Hinojar et de Mazarrón (Cordillères Bétiques Internes, Espagne). These 3e cycle, Univ Pierre et Marie Curie, Paris, 316 pp

    Google Scholar 

  • De Larouzière FD, Bolze J, Bordet P, Hernández J, Montenat C, Ott d’Estevou P (1988) The Betic segment of the lithospheric Trans-Alborán shear zone during the Late Miocene. Tectonophysics 152 (1–2):41-52. https://doi.org/10.1016/0040-1951(88)90028-5

    Article  Google Scholar 

  • Della Ventura G, Bellatreccia F, Cesare B, Harley S, Piccinini M (2009) FTIR microspectroscopy and SIMS study of water-poor cordierite from El Hoyazo, Spain: application to mineral and melt devolatilization. Lithos 113 (3):498–506. https://doi.org/10.1016/j.lithos.2009.05.031

    Article  Google Scholar 

  • Di Battistini G, Toscani L, Iaccarino S, Villa IM (1987) K/Ar ages and the geological setting of calc-alkaline volcanic rocks from Sierra de Gata, SE Spain. NJb Miner Mh H8:369–383

    Google Scholar 

  • Do Couto D, Gorini C, Jolivet L, Lebret N, Augier R, Gumiaux C, d’Acremont E, Ammar A, Jabour H, Auxietre JL (2016) Tectonic and stratigraphic evolution of the Western Alborán Sea Basin in the last 25 Myrs. Tectonophysics 677–678:280–311. https://doi.org/10.1016/j.tecto.2016.03.020

    Article  Google Scholar 

  • Doblas M, Oyarzun R (1989) Mantle Core Complexes and Neogene Extensional Detachment Tectonics in the Western Betic Cordilleras, Spain - an Alternative Model for the Emplacement of the Ronda Peridotite. Earth Planet Sci Lett 93 (1):76–84. https://doi.org/10.1016/0012-821x(89)90185-4

    Article  Google Scholar 

  • Doblas M, López-Ruiz J, Cebriá J-M (2007) Cenozoic evolution of the Alboran Domain: a review of the tectonomagmatic models. Geol Soc Spec Pap 418:303–320

    Google Scholar 

  • Docherty C, Banda E (1995) Evidence for the eastward migration of the Alboran Sea based on regional subsidence analysis: A case for basin formation by delamination of the subcrustal lithosphere? Tectonics 14 (4):804–818. https://doi.org/10.1029/95tc00501

    Article  Google Scholar 

  • Doglioni C, Gueguen E, Sàbat F, Fernandez M (1997) The Western Mediterranean extensional basins and the Alpine orogen. Terra Nova 9:109–112

    Article  Google Scholar 

  • Duggen S, Hoernle K, van den Bogaard P, Harris C (2004) Magmatic evolution of the Alboran region: The role of subduction in forming the western Mediterranean and causing the Messinian Salinity Crisis. Earth Planet Sci Lett 218 (1–2):91-108. https://doi.org/10.1016/s0012-821x(03)00632-0

    Article  Google Scholar 

  • Duggen S, Hoernle K, Van den Bogaard P, Garbe-Schonberg D (2005) Post-collisional transition from subduction- to intraplate-type magmatism in the westernmost Mediterranean: Evidence for continental-edge delamination of subcontinental lithosphere. J Petrol 46 (6):1155–1201. https://doi.org/10.1093/petrology/egi013

    Article  Google Scholar 

  • Duggen S, Hoernle K, Klugel A, Geldmacher J, Thirlwall M, Hauff F, Lowry D, Oates N (2008) Geochemical zonation of the Miocene Alboran Basin volcanism (westernmost Mediterranean): geodynamic implications. Contrib Mineral Petrol 156 (5):577–593. https://doi.org/10.1007/s00410-008-0302-4

    Article  Google Scholar 

  • Dupuy C, Dostal J, Boivin PA (1986) Geochemistry of ultramafic xenoliths and their host alkali basalt from Tallante, southern Spain. Mineralogical Magazine 50:231–239

    Article  Google Scholar 

  • El Bakkali S, Gourgaud A, Bourdier J-L, Bellon H, Gundogdu N (1998) Post-collision neogene volcanism of the Eastern Rif (Morocco): magmatic evolution through time. Lithos 45 (1–4):523-543

    Article  Google Scholar 

  • Faccenna C, Piromallo C, Crespo-Blanc A, Jolivet L, Rossetti F (2004) Lateral slab deformation and the origin of the western Mediterranean arcs. Tectonics 23 (1):n/a-n/a. https://doi.org/10.1029/2002tc001488

  • Fernández-Soler JM (1996) El Volcanismo Calco-Alcalino en el Parque Natural de Cabo de Gata (Almería): Estudio Volcanológico y Petrológico, v 2. Monografías del Medio Natural. Sociedad Almeriense de Historia Natural, Almería

    Google Scholar 

  • Fernández-Soler JM (2001) The Development of the Neogene Basins: Excursion: The volcanics of the Almería and Vera Basins (half day). In: A Field Guide to the Neogene Sedimentary Basins of the Almeria Province, South-East Spain. pp 81–88. https://doi.org/10.1002/9781444300604.ch3

  • Fernández-Soler JM, Acosta-Vigil A, Gómez-Pugnaire MT, Comas MC (2007) Magma mixing in El Hoyazo volcanics, Betic Cordilleras (SE Spain). Geoph Res Abstracts 9:04202

    Google Scholar 

  • Ferrero S, Bodnar R.J, Cesare B, Viti C (2011) Reequilibration of primary fluid inclusions in peritectic garnet from metapelitic enclaves, El Hoyazo, Spain. Lithos 124:117–131

    Article  Google Scholar 

  • Ferri F, Burlini L, Cesare B, Sassi R (2007) Seismic properties of lower crustal xenoliths from El Hoyazo (SE Spain): Experimental evidence up to partial melting. Earth Planet Sci Lett 253 239–253

    Article  Google Scholar 

  • Ferri F, Gibert B, Violay M, Cesare B (2013) Electrical conductivity in a partially molten lower crust from measurements on xenoliths. Tectonophysics 586: 84–94

    Article  Google Scholar 

  • Ferri F, Burlini L, Cesare B (2016) Effect of partial melting on Vp and Vs in crustal enclaves from Mazarrón (SE Spain). Tectonophysics 671:139–150. https://doi.org/10.1016/j.tecto.2015.12.030

    Article  Google Scholar 

  • Foley SF, Venturelli G, Green DH, Toscani L (1987) The Ultrapotassic Rocks - Characteristics, Classification, and Constraints for Petrogenetic Models. Earth Sci Rev 24 (2):81–134. https://doi.org/10.1016/0012-8252(87)90001-8

    Article  Google Scholar 

  • Gernon TM, Spence S, Trueman CN, Taylor RN, Rohling E, J. Hatter S, Harding IC (2015) Emplacement of the Cabezo María lamproite volcano (Miocene, SE Spain). Bull Volcano 77:52. https://doi.org/10.1007/s00445-015-0934-y

  • Gill RCO, Aparicio A, El Azzouzi M, Hernández J, Thirlwall MF, Bourgois J, Marriner GF (2004) Depleted arc volcanism in the Alboran Sea and shoshonitic volcanism in Morocco: geochemical and isotopic constraints on Neogene tectonic processes. Lithos 78 (4):363–388. https://doi.org/10.1016/j.lithos.2004.07.002

    Article  Google Scholar 

  • Gómez-Pugnaire MT, Chacón J, Mitrofanov F, Timofeev V (1982) First report on the pre-Cambrian rocks in the graphite-bearing series of the Nevado-Filábride complex (Betic Cordilleras, Spain). Neues Jahrb Geol Palaeontol Monatsh 3:176–180

    Google Scholar 

  • Gómez-Pugnaire MT, Muñoz M (1991) Al-rich xenoliths in the Nevado-Filábride metabasites: evidence for a continental setting of this basic magmatism in the Betic Cordilleras (SE Spain). Eur J Mineral 3: 193–198

    Article  Google Scholar 

  • Gómez-Pugnaire MT, Franz G, López-Sánchez-Vizcaíno V (1994) Retrograde formation of NaCl-scapolite in high pressure metaevaporites from the Cordilleras Béticas (Spain). Contrib Mineral Petrol 116: 448–461

    Article  Google Scholar 

  • Gómez-Pugnaire MT, Ulmer P, López Sánchez-Vizcaíno V (2000a) Petrogenesis of the mafic igneous rocks of the Betic Cordilleras: A field, petrological and geochemical study. Contrib Mineral Petrol 139: 436–457

    Article  Google Scholar 

  • Gómez-Pugnaire MT, Braga JC, Martín JM, Sassi FP, Del Moro A (2000b) The age of the Nevado-Filábride cover (Betic Cordilleras, S Spain): regional implications. Schweiz Mineral Petrogr Mitt 80: 45–52

    Google Scholar 

  • Gómez-Pugnaire MT, Galindo-Zaldívar J, Rubatto D, González-Lodeiro F, López Sánchez-Vizcaíno V, Jabaloy A (2004) A reinterpretation of the Nevado-Filábride and Alpujárride complexes (Betic Cordillera): field, petrography and U-Pb ages from orthogneisses (western Sierra Nevada, S Spain). Schweiz Mineral Petrogr Mitt 84:303–322

    Google Scholar 

  • Gómez-Pugnaire MT, Rubatto D, Fernández-Soler JM, Jabaloy A, López Sánchez-Vizcaíno V, González-Lodeiro F, Galindo-Zaldívar J, Padrón-Navarta JA (2012) Late Variscan magmatism in the Nevado-Filábride Complex: U-Pb geochronologic evidence for the pre-Mesozoic nature of the deepest Betic complex (SE Spain). Lithos 146–147(C): 93–111

    Google Scholar 

  • Gutscher M-A, Malod J, Rehault JP, Contrucci I, Klingelhoefer F, Mendes-Victor L, Spakman W (2002) Evidence for active subduction beneath Gibraltar. Geology 30 (12):1071–1074

    Article  Google Scholar 

  • Hergt JM, Peate DW, Hawkesworth CJ (1991) The petrogenesis of Gondwana low-Ti food basalts. Earth Planet Sci Let 105: 134¬148

    Article  Google Scholar 

  • Hernández J, Larouzière FD, Bolze J, Bordet P (1987) Le magmatisme néogène bético-rifain et le couloir de décrochement trans-Alborán. Bull Soc Géol France (8) III (2):257–267

    Google Scholar 

  • Hidas K, Konc Z, Garrido CJ, Tommasi A, Vauchez A, Padrón-Navarta JA, Marchesi C, Booth-Rea G, Acosta-Vigil A, Szabó C, Varas-Reus MI, Gervilla F (2016) Flow in the western Mediterranean shallow mantle: Insights from xenoliths in Pliocene alkali basalts from SE Iberia (eastern Betics, Spain). Tectonics 35 (11):2657–2676. https://doi.org/10.1002/2016tc004165

    Article  Google Scholar 

  • Hoernle K, Van den Bogaard P, Duggen S, Mocek B, Garbe-Schönberg D (1999) Evidence for Miocene subduction beneath the Alboran Sea (Western Mediterranean) from 40Ar/39Ar age dating and the geochemistry of volcanic rocks from Holes 977A and 978A. Proc Ocean Drill Prog Sci Results 161:357–373

    Google Scholar 

  • Jabaloy A, Gómez-Pugnaire MT, Padrón-Navarta JA, López Sánchez-Vizcaíno V, Garrido CJ (2015) Subduction- and exhumation-related structures preserved in metaserpentinites and associated metasediments from the Nevado-Filábride Complex (Betic Cordillera, SE Spain). Tectonophysics 644:40–57. https://doi.org/10.1016/j.tecto.2014.12.022

    Article  Google Scholar 

  • Jagoutz O, Müntener O, Burg JP, Ulmer P, Jagoutz E (2006) Lower continental crust formation through focused flow in km-scale melt conduits: The zoned ultramafic bodies of the Chilas Complex in the Kohistan island arc (NW Pakistan). Earth Planet Sci Lett 242:320–342

    Google Scholar 

  • Jagoutz O, Müntener O, Manatschal G, Rubatto D, Peron-Pinvidic G, Turrin BD, Villa IM (2007) The rift-to-drift transition in the North Atlantic: a stuttering start of the MORB machine? Geology 35 (12): 1087–1090. https://doi.org/10.1130/g23613a.1

    Article  Google Scholar 

  • Karson JA (1990) Seafloor spreading on the Mid-Atlantic Ridge: implications for the structure of ophiolites and oceanic lithosphere produced in slow-spreading environments. In: Malpas J, Moores EM, Panyiotou A, Xenophontos C (Eds.), Ophiolites: Oceanic Crustal Analogues. Geological Survey Department, Nicosia, Cyprus, pp. 547–555

    Google Scholar 

  • Kirchner KL, Behr WM, Loewy S, Stockli DF (2016) Early Miocene subduction in the western Mediterranean: Constraints from Rb-Sr multimineral isochron geochronology. Geochem Geophys Geosyst 17. https://doi.org/10.1002/2015gc006208

  • Laborda-López C, López-Sánchez-Vizcaíno V, Marchesi C, Gómez-Pugnaire MT, Garrido CJ, Jabaloy-Sánchez A, Padrón-Navarta JA, Hidas K (2018) High‐P metamorphism of rodingites during serpentinite dehydration (Cerro del Almirez, Southern Spain): Implications for the redox state in subduction zones. J Metamorph Geol 36:1141–1173. https://doi.org/10.1111/jmg.12440

  • Lafuste MJ, Pavillon MJ (1976) Mise en évidence d’Eifélien daté au sein des terrains métamorphiques des zones internes des Cordillères Bétiques. CR Acad Sci Paris 283, série D : 1015–1018

    Google Scholar 

  • Lodder W (1966) Gold-alunite deposits and zonal wall-rock alteration near Rodalquilar, SE Spain. Thesis, Univ Amsterdam

    Google Scholar 

  • Lonergan L, White N (1997) Origin of the Betic-Rif mountain belt. Tectonics 16 (3):504–522. https://doi.org/10.1029/96tc03937

    Article  Google Scholar 

  • López Ruiz J, Rodríguez Badiola E (1980) La Región Volcánica Neógena del Sureste de España. Est Geol 36:5–63

    Google Scholar 

  • López-Ruiz J, Cebriá JM, Doblas M (2002) Cenozoic volcanism I: The Iberian peninsula. In: Gibbons W, Moreno MT (eds) The Geology of Spain. Geol Soc London, pp 417–438

    Google Scholar 

  • López-Ruiz J, Cebriá JM, Doblas M, Benito R (2004) La región volcánica de Almería-Murcia. In: Vera JA (ed) Geología de España. Instituto Geológico y Minero de España-Sociedad Geológica de España, pp 678–682

    Google Scholar 

  • López Sánchez-Vizcaíno V, Franz G, Gómez-Pugnaire MT (1995) The behavior of Cr during metamorphism of carbonate rocks from the Nevado-Filábride Complex, Betic Cordilleras, Spain. Can Min 33: 85–104

    Google Scholar 

  • López Sánchez-Vizcaíno V, Rubatto D, Gómez-Pugnaire MT, Trommsdorff V, Müntener O (2001) Middle Miocene high-pressure metamorphism and fast exhumation of the Nevado-Filábride Complex, SE Spain. Terra Nova 13 (5):327–332

    Article  Google Scholar 

  • Lustrino M, Wilson M (2007) The circum-Mediterranean anorogenic Cenozoic igneous province. Earth Sci Rev 81 (1–2):1–65. https://doi.org/10.1016/j.earscirev.2006.09.002

    Article  Google Scholar 

  • Lustrino M, Duggen S, Rosenberg CL (2011) The Central-Western Mediterranean: Anomalous igneous activity in an anomalous collisional tectonic setting. Earth-Sci Rev 104 (1–3):1-40. https://doi.org/10.1016/j.earscirev.2010.08.002

    Article  Google Scholar 

  • Manatschal G, Müntener O (2009) A type sequence across an ancient magma-poor ocean–continent transition: the example of the western Alpine Tethys ophiolites. Tectonophysics 473: 4–19. https://doi.org/10.1016/j.tecto.2008.07.021

    Article  Google Scholar 

  • Marchesi C, Konc Z, Garrido CJ, Bosch D, Hidas K, Varas-Reus MI, Acosta-Vigil A (2017) Multi-stage evolution of the lithospheric mantle beneath the westernmost Mediterranean: Geochemical constraints from peridotite xenoliths in the eastern Betic Cordillera (SE Spain). Lithos 276:75–89. https://doi.org/10.1016/j.lithos.2016.12.011

  • Martín-Escorza C, López-Ruiz J (1988) Un modelo geodinámico para el Volcanismo Neógeno del Sureste Ibérico. Est Geol 44:243–251

    Article  Google Scholar 

  • Mattei M, Riggs NR, Giordano G, Guarnieri L, Cifelli F, Soriano CC, Jicha B, Jasim A, Marchionni S, Franciosi L, Tommasini S, Porreca M, Conticelli S (2014) Geochronology, geochemistry and geodynamics of the Cabo de Gata volcanic zone, Southeastern Spain. Ital J Geosci 133 (3):341–361. https://doi.org/10.3301/ijg.2014.44

    Article  Google Scholar 

  • Maury CR, Fourcade S, Coulon C, El Azzouzi Mh, Bellon H, Coutelle A, Ouabadi A, Semroud B, Megartsi Mh, Cotten J, Belanteur O, Louni-Hacini A, Piqué A, Capdevila R, Hernández J, Réhault JP (2000) Post-collisional Neogene magmatism of the Mediterranean Maghreb margin: a consequence of slab breakoff. C R Acad Sci IIA 331 (3):159–173. https://doi.org/10.1016/S1251-8050(00)01406-3

    Article  Google Scholar 

  • McKenzie D, O Nions RK (1995) The source region of the ocean island basalts. J Petrol 36: 133–159

    Google Scholar 

  • Mitchell RH, Bergman SC (1991) Petrology of Lamproites. Plenum Press, New York

    Book  Google Scholar 

  • Montgomery P, Farr MR, Franseen EK, Goldstein RH (2001) Constraining controls on carbonate sequences with high-resolution chronostratigraphy: Upper Miocene, Cabo de Gata region, SE Spain. Palaeogeogr Palaeoclimatol Palaeoecol 176 (1–4):11–45. https://doi.org/10.1016/S0031-0182 (01)00324-8

    Article  Google Scholar 

  • Munskgaard NC (1984) High dO18 and possible preeruptional Rb-Sr isochrons in cordierite-bearing Neogene volcanics from SE Spain. Contrib Mineral Petrol 87:351–8

    Google Scholar 

  • Niggli P (1923) Gesteins- und Mineralprovinzen. Verlag Gebrüder Borntraeger, Berlin

    Google Scholar 

  • Oepen PS-v, Friedrich G, Vogt JH (1989) Fluid evolution, wallrock alteration, and ore mineralization associated with the Rodalquilar epithermal gold-deposit in southeast Spain. Miner Depos 24 (4):235–243. https://doi.org/10.1007/bf00206385

  • Oyarzun R, Doblas M, López-Ruiz J, Cebriá JM (1997) Opening of the central Atlantic and asymmetric mantle upwelling phenomena: Implications for long-lived magmatism in western North Africa and Europe. Geology 25 (8):727–730. https://doi.org/10.1130/0091-7613(1997)025%3c0727:ootcaa%3e2.3.co;2

    Article  Google Scholar 

  • Padrón-Navarta JA, López Sánchez-Vizcaíno V, Garrido CJ, Gómez-Pugnaire MT (2011) Metamorphic Record of High-pressure Dehydration of Antigorite Serpentinite to Chlorite Harzburgite in a Subduction Setting (Cerro del Almirez, Nevado–Filábride Complex, Southern Spain). J Petrol 52: 2047–2078. https://doi.org/10.1093/petrology/egr039

    Article  Google Scholar 

  • Peccerillo A, Taylor SR (1976) Geochemistry of Eocene calc-alkaline volcanic rocks from Kastamonu area, northern Turkey. Contrib Mineral Petrol 58:63–81

    Article  Google Scholar 

  • Pérez-Valera LA, Rosenbaum G, Sánchez-Gómez M, Azor A, Fernández-Soler JM, Pérez-Valera F, Vasconcelos PM (2013) Age distribution of lamproites along the Socovos Fault (southern Spain) and lithospheric scale tearing. Lithos 180:252–263. https://doi.org/10.1016/j.lithos.2013.08.016

    Article  Google Scholar 

  • Perini G, Cesare B, Gomez-Pugnaire MT, Ghezzi L, Tommasini S (2009) Armouring effect on Sr-Nd isotopes during disequilibrium crustal melting: the case study of frozen migmatites from El Hoyazo and Mazarron, SE Spain. Eur J Mineral 21:117–131

    Article  Google Scholar 

  • Piqué A, Enrique P, Alías G (2004) Enclaves tonalíticos en la dacita neógena del Hoyazo de Níjar (Almería): hipótesis petrogenética. Geotemas 6 (1):93–96

    Google Scholar 

  • Platt JP, Vissers RLM (1989) Extensional Collapse of Thickened Continental Lithosphere - a Working Hypothesis for the Alborán Sea and Gibraltar Arc. Geology 17 (6):540–543. https://doi.org/10.1130/00917613(1989)017 < 0540: Ecotcl > 2.3.Co;2

    Article  Google Scholar 

  • Platt JP, Anczkiewicz R, Soto JI, Kelley S (2006) Early Miocene continental subduction and rapid exhumation in the western Mediterranean. Geology 34(11): 981–984

    Article  Google Scholar 

  • Platt JP, Soto JI, Whitehouse MJ, Hurford AJ, Kelley SP (1998) Thermal evolution, rate of exhumation, and tectonic significance of metamorphic rocks from the floor of the Alboran extensional basin, western Mediterranean. Tectonics 17 (5):671–689. https://doi.org/10.1029/98tc02204

    Article  Google Scholar 

  • Playa E, Gimeno D (2006) Evaporite deposition and coeval volcanism in the Fortuna basin (Neogene, Murcia, Spain). Sediment Geol 188:205–218. https://doi.org/10.1016/j.sedgeo.2006.03.015

    Article  Google Scholar 

  • Porreca M, Cifelli F, Soriano C, Giordano G, Romano C, Conticelli S, Mattei M (2014) Hyaloclastite fragmentation below the glass transition: An example from El Barronal submarine volcanic complex (Spain). Geology 42 (1):87–90. https://doi.org/10.1130/g34744.1

    Article  Google Scholar 

  • Prelević D, Foley SF (2007) Accretion of arc-oceanic lithospheric mantle in the Mediterranean: Evidence from extremely high-Mg olivines and Cr-rich spinel inclusions in lamproites. Earth Planet Sci Lett 256 (1–2):120-135. https://doi.org/10.1016/j.epsl.2007.01.018

    Article  Google Scholar 

  • Prelević D, Foley SF (2008) The origin of lamproites revisited: A Mediterranean perspective. Geochim Cosmochim Ac 72 (12):A760-A760

    Google Scholar 

  • Prelević D, Foley SF, Cvetković V (2007) A review of petrogenesis of Mediterranean Tertiary lamproites: A perspective from the Serbian ultrapotassic province. Geological Society of America Special Papers 418:113–129. https://doi.org/10.1130/2007.2418 (06)

    Article  Google Scholar 

  • Prelević D, Stracke A, Foley SF, Romer RL, Conticelli S (2010) Hf isotope compositions of Mediterranean lamproites: Mixing of melts from asthenosphere and crustally contaminated mantle lithosphere. Lithos 119 (3–4):297-312. https://doi.org/10.1016/j.lithos.2010.07.007

    Article  Google Scholar 

  • Puga E, Díaz de Federico A, Bargossi GM, Morten L (1989) The Nevado-Filábride metaophiolitic association in the Cóbdar region (Betic Cordillera, SE Spain) preservation of pillow structures and development of coronitic eclogites. Geod Acta 3: 17–36

    Article  Google Scholar 

  • Puga E, Díaz de Federico A, Demant A (1995) The eclogitized pillows of the Betic Ophiolitic Association: relics of the Tethys Ocean floor incorporated in the Alpine chain after subduction. Terra Nova 7: 31–43

    Article  Google Scholar 

  • Puga E, Nieto JM, Díaz de Federico A, Bodinier JL, Morten L (1999) Petrology and metamorphic evolution of ultramafic rocks and dolerite dykes of the Betic ophiolitic association (Mulhacén Complex, SE Spain); evidence of eo-Alpine subduction following an ocean-floor metasomatic process. Lithos 49: 23–56

    Article  Google Scholar 

  • Puga E, Fanning M, Díaz de Federico A, Nieto JM, Beccaluva L, Bianchini G, Díaz Puga MA (2011) Petrology, geochemistry and U–Pb geochronology of the Betic Ophiolites: Inferences for Pangaea break-up and birth of the westernmost Tethys Ocean. Lithos 124: 255–272. https://doi.org/10.1016/j.lithos.2011.01.002

  • Rampone E, Vissers RLM, Poggio M, Scambelluri M, Zanetti A (2010) Melt Migration and Intrusion during Exhumation of the Alboran Lithosphere: the Tallante Mantle Xenolith Record (Betic Cordillera, SE Spain). Journal of Petrology 51 (1–2):295-325. https://doi.org/10.1093/petrology/egp061

    Article  Google Scholar 

  • Royden LH (1993) Evolution of Retreating Subduction Boundaries Formed during Continental Collision. Tectonics 12 (3):629–638. https://doi.org/10.1029/92tc02641

    Article  Google Scholar 

  • Rutter EH, Faulkner DR, Burgess R (2012) Structure and geological history of the Carboneras Fault Zone, SE Spain: Part of a stretching transform fault system. Journal of Structural Geology 42:227–245. https://doi.org/10.1016/j.jsg.2012.05.001

    Article  Google Scholar 

  • Rutter EH, Burgess R, Faulkner DR (2014) Constraints on the movement history of the Carboneras fault zone (SE Spain) from stratigraphy and 40Ar-39Ar dating of Neogene volcanic rocks. Geol Soc Spec Publ 394. https://doi.org/10.1144/sp394.5

  • Rytuba JJ, Arribas A, Cunningham CG, McKee EH, Podwysocki MH, Smith JG, Kelly WC, Arribas A (1990) Mineralized and unmineralized calderas in Spain; Part II, evolution of the Rodalquilar caldera complex and associated gold-alunite deposits. Miner Depos 25 (S1):S29-S35. https://doi.org/10.1007/bf00205247

    Article  Google Scholar 

  • Scotney P, Burgess R, Rutter EH (2000) 40Ar/ 39Ar age of the Cabo de Gata volcanic series and displacements on the Carboneras fault zone, SE Spain. J Geol Soc 157 (5):1003–1008. https://doi.org/10.1144/jgs.157.5.1003

    Article  Google Scholar 

  • Seber D, Barazangi M, Ibenbrahim A, Demnati A (1996) Geophysical evidence for lithospheric delamination beneath the Alboran Sea and Rif-Betic mountains. Nature 379 (6568):785–790. https://doi.org/10.1038/379785a0

    Article  Google Scholar 

  • Seghedi I, Szakacs A, Hernández-Pacheco A, Brandle-Matesanz JL (2007) Miocene lamproite volcanoes in south-eastern Spain - an association of phreatomagmatic and magmatic products. J Volcanol Geotherm Res 159 (1–3):210-224. https://doi.org/10.1016/j.jvolgeores.2006.06.012

    Article  Google Scholar 

  • Soriano C, Riggs N, Giordano G, Porreca M, Conticelli S (2012) Cyclic growth and mass wasting of submarine Los Frailes lava flow and dome complex in Cabo de Gata, SE Spain J Volcanol Geotherm Res 231–232:72-86. https://doi.org/10.1016/j.jvolgeores.2012.04.015

    Article  Google Scholar 

  • Shervais JW (1982) Ti-V plots and petrogenesis of modern and ophiolitic lavas. Earth Planet Sci Lett 59: 101–118

    Article  Google Scholar 

  • Shimizu Y, Arai S, Morishita T, Yurimoto H, Gervilla F (2004) Petrochemical characteristics of felsic veins in mantle xenoliths from Tallante (SE Spain): an insight into activity of silicic melt within the mantle wedge. Earth Env Sci T R So 95 (1–2):265-276. https://doi.org/10.1017/s0263593300001061

    Article  Google Scholar 

  • Shimizu Y, Arai S, Morishita T, Ishida Y (2008) Origin and significance of spinel–pyroxene symplectite in lherzolite xenoliths from Tallante, SE Spain. Mineralogy and Petrology 94 (1):27–43. https://doi.org/10.1007/s00710-008-0004-7

    Article  Google Scholar 

  • Snow CA (2006) A reevaluation of tectonic discrimination diagrams and a new probabilistic approach using large geochemical databases: Moving beyond binary and ternary plots. J Geophys Res 111: B06206. https://doi.org/10.1029/2005jb003799

    Article  Google Scholar 

  • Soriano C, Giordano G, Cas R, Riggs N, Porreca M (2013) Facies architecture, emplacement mechanisms and eruption style of the submarine andesite El Barronal complex, Cabo de Gata, SE Spain. J Volcanol Geotherm Res 264:210–222. https://doi.org/10.1016/j.jvolgeores.2013.07.001

    Article  Google Scholar 

  • Soriano CC, Giordano G, Riggs NR, Porreca M, Bonamico A, Iosimi D, Cifelli F, Mattei M, De Benedetti A, Guarnieri L, Marchionni S (2014) Geologic map, volcanic stratigraphy and structure of the Cabo de Gata volcanic zone, Betic-Rif orogen, SE Spain. Ital J Geosci 133 (3):325–340. https://doi.org/10.3301/ijg.2014.45

    Article  Google Scholar 

  • Sun SS, McDonough, WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes In: Magmatism in the Ocean Basins. Saunders AD, Norry MJ (eds) Geol Soc Spec Publ 42: 313–345

    Google Scholar 

  • Tendero JA, Martín-Algarra A, Puga E, Díaz de Federico A (1993) Lithostratigraphie des métasediments de l’association ophiolitique Nevado-Filábride (SE Espagne) et mise en évidence d’objets ankéritiques évoquant des foraminifères du Cretacé: conséquences paléogéographiques. CR Acad Sci Paris 316: 1115–1122

    Google Scholar 

  • Torres-Roldán RL (1979) The tectonic subdivision of the Betic Zone (Betic Cordilleras, southern Spain); its significance and one possible geotectonic scenario for the westernmost Alpine Belt. Am J Sci 279 (1):19–51

    Article  Google Scholar 

  • Torres-Roldán RL, Poli G, Peccerillo A (1986) An Early-Miocene arc-tholeiitic magmatic dikeevent from the Alboran Sea - Evidence for precollisional subduction and back-arc crustal extension in the westernmost mediterranean. Geol Rundsch 75:219–234

    Article  Google Scholar 

  • Toscani L, Venturelli G, Barbieri M, Capedri S, Fernandez Soler JM, Oddone M (1990) Geochemistry and petrogenesis of two-Pyroxene andesites from Sierra de Gata (SE Spain). Mineral Petrol 41 (2):199–213. https://doi.org/10.1007/bf01168495

    Article  Google Scholar 

  • Toscani L, Contini S, Ferrarini M (1995) Lamproitic rocks from Cabezo Negro de Zeneta: Brown micas as a record of magma mixing. Mineral Petrol 55 (4):281–292. https://doi.org/10.1007/bf01165122

    Article  Google Scholar 

  • Trommsdorff V, López Sánchez-Vizcaíno V, Gómez-Pugnaire MT, Muntener O (1998) High-pressure breakdown of antigorite to spinifex-textured olivine and orthopyroxene, SE Spain. Contrib Mineral Petrol 132: 139–148

    Article  Google Scholar 

  • Turner SP, Platt JP, George RMM, Kelley SP, Pearson DG, Nowell GM (1999) Magmatism associated with orogenic collapse of the Betic-Alboran Domain, SE Spain. J Petrol 40 (6):1011–1036. https://doi.org/10.1093/petrology/40.6.1011

    Article  Google Scholar 

  • Varas-Reus MI, Garrido CJ, Marchesi C, Bosch D, Acosta-Vigil A, Hidas K, Barich A, Booth-Rea G (2016) Sr-Nd-Pb isotopic systematics of crustal rocks from the western Betics (S. Spain): Implications for crustal recycling in the lithospheric mantle beneath the westernmost Mediterranean. Lithos 276: 45–61. https://doi.org/10.1016/j.lithos.2016.10.003

    Article  Google Scholar 

  • Venturelli G, Capedri S, Di Battistini M, Crawford A, Kogarko LN, Celestini S (1984) The ultrapotassic rocks from southeastern Spain. Lithos 17:37–54

    Article  Google Scholar 

  • Venturelli G, Toscani L, Salvioli Mariani E (1991) Mixing between lamproitic and dacitic components in Miocene volcanic rocks of S.E. Spain. Mineral Mag 55:282–285

    Article  Google Scholar 

  • Vermeesch P (2006a) Tectonic discrimination of basalts with classification trees. Geoch Cosmoch Acta 70:1839–1848. https://doi.org/10.1016/j.gca.2005.12.016

    Article  Google Scholar 

  • Vermeesch P (2006b) Tectonic discrimination diagrams revisited. Geochem Geophy Geosyst 7: Q06017. https://doi.org/10.1029/2005gc001092

    Article  Google Scholar 

  • Vielzeuf D (1983) The Spinel and Quartz associations in high grade xenoliths from Tallante (S.E. Spain) and their potential use in Geothermometry and Barometry. Contrib Mineral Petr 82:301–311

    Google Scholar 

  • Wilson M, Bianchini G (1999) Tertiary-Quaternary magmatism within the Mediterranean and surrounding regions. Geol Soc Spec Pub v 156. https://doi.org/10.1144/gsl.sp.1999.156.01.09

  • Whitmarsh RB, Manatschal G, Minshull TA (2001) Evolution of magma-poor Continental margins from rifting to sea-floor spreading. Nature| 413:150–154

    Google Scholar 

  • Yu X, Lee Cin-Ty A (2016) Critical porosity of melt segregation during crustal melting: Constraints from zonation of peritectic garnets in a dacite volcano. Earth Planet Sci Lett 449: 127–134. doi.org/10.1016/j.epsl.2016.05.025

    Article  Google Scholar 

  • Zeck HP (1970) An erupted Migmatite from Cerro del Hoyazo, SE Spain. Contrib Mineral Petrol 26:225–246

    Article  Google Scholar 

  • Zeck HP (1992) Restite-melt and mafic-felsic magma mingling in an S-type dacite, Cerro del Hoyazo, southeastern Spain. Trans R Soc Edinb: Earth Sci 83:139–144

    Google Scholar 

  • Zeck HP (1996) Betic-Rif orogeny: subduction of Mesozoic Tethys lithosphere under eastward drifting Iberia, slab detachment shortly before 22 Ma, and subsequent uplift and extensional tectonics. Tectonophysics 254 (1–2):1–16

    Article  Google Scholar 

  • Zeck HP, Williams IS (2002) Inherited and magmatic zircon from Neogene Hoyazo cordierite dacite, SE Spain—Anatectic source rock provenance and magmatic evolution. J Petrol 43:1089–1104. doi.org/10.1093/petrology/43.6.1089

    Article  Google Scholar 

  • Zeck HP, Kristensen AB, Williams IS (1998) Post-collisional volcanism in a sinking slab setting - crustal anatectic origin of pyroxene-andesite magma, Caldear Volcanic Group, Neogene Alboran volcanic province, southeastern Spain. Lithos 45 (1–4):499-522. https://doi.org/10.1016/s0024-4937(98)00047-4

    Article  Google Scholar 

  • Zeck HP, Kristensesn AB, Nakamura E (1999) Inherited Palaeozoic and Mesozoic Rb-Sr Isotopic Signatures in Neogene Calc-alkaline Volcanics, Alborán Volcanic Province, SE Spain. J Petrol 40:511–524

    Article  Google Scholar 

  • Zeck HP, Maluski H, Kristensen AB (2000) Revised geochronology of the Neogene calc-alkaline volcanic suite in Sierra de Gata, Alborán volcanic province, SE Spain. J Geol Soc 157 (1):75–81

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Teresa Gómez-Pugnaire .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gómez-Pugnaire, M.T., López Sánchez-Vizcaíno, V., Fernández-Soler, J.M., Acosta-Vigil, A. (2019). Mesozoic and Cenozoic Magmatism in the Betics. In: Quesada, C., Oliveira, J. (eds) The Geology of Iberia: A Geodynamic Approach. Regional Geology Reviews. Springer, Cham. https://doi.org/10.1007/978-3-030-11295-0_14

Download citation

Publish with us

Policies and ethics