Skip to main content

A Comprehensive Approach for Camera/LIDAR Frame Alignment

  • Conference paper
  • First Online:
Book cover Informatics in Control, Automation and Robotics (ICINCO 2017)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 495))

  • 1013 Accesses

Abstract

This paper deals with the initial phase of any multi-sensor acquisition, the sensor alignment process. We focus on extrinsic calibration of vision-based and line scan LIDAR sensors for automotive application. We investigate two research approaches for the calibration process: analytical and numeric solutions. Additionally, we present a complete implementable tool-chain, to extract the co-features for both types of sensors: line detections for cameras and segmentation process for LIDAR sensors. Moreover, we investigate the impact of the calibration accuracy on sensor fusion performance. Results of experiments using real-world data are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. (2016) Website. http://fr.mathworks.com/help/optim/ug/local-vs-global-optima.html

  2. Auzinger, W., Stetter, H.J.: An elimination algorithm for the computation of all zeros of a system of multivariate polynomial equations. Numerical Mathematics, pp. 11–30. Springer, Singapore (1988)

    Google Scholar 

  3. Baig, Q, Aycard, O, Vu, TD, Fraichard, T.: Fusion between laser and stereo vision data for moving objects tracking in intersection like scenario. In: Proceedings of Intelligent Vehicles Symposium (IV), pp. 362–367. IEEE (2011)

    Google Scholar 

  4. Bertsekas, D.P.: Nonlinear programming. Athena Scientific, Belmont (1999)

    Google Scholar 

  5. Bouain, M., Berdjag, D., Fakhfakh, N., Atitallah, R.B.: (2017) An extrinsic sensor calibration framework for sensor-fusion based autonomous vehicle perception. In: Proceedings of the 14th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, INSTICC, SciTePress, pp. 505–512. https://doi.org/10.5220/0006438105050512

  6. Bouain, M., Ali, K.M., Berdjag, D., Fakhfakh, N., Atitallah, R.B.: An embedded multi-sensor data fusion design for vehicle perception tasks. J. Commun.13(1), (2018). https://doi.org/10.12720/jcm

  7. Byrod, M., Josephson, K., Astrom, K.: Improving numerical accuracy of gröbner basis polynomial equation solvers. In: Proceedings of the 11th International Conference on Computer Vision (ICCV), pp. 1–8, IEEE, Rio de Janeiro, Brazil (2007)

    Google Scholar 

  8. Byrod, M., Josephson, K., Åström, K.: A column-pivoting based strategy for monomial ordering in numerical gröbner basis calculations. In: Proceedings of the 10th European Conference on Computer Vision (ECCV), pp. 130–143, Springer, Marseille, France (2008a)

    Google Scholar 

  9. Byrod, M., Kukelova, Z., Josephson, K., Pajdla, T., Astrom, K.: Fast and robust numerical solutions to minimal problems for cameras with radial distortion. In: Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–8, IEEE, Anchorage, USA (2008b)

    Google Scholar 

  10. Ćesić, J., Marković, I., Cvišić, I., Petrović, I.: Radar and stereo vision fusion for multitarget tracking on the special euclidean group. J. Robot. Auton. Syst. 83, 338–348 (2016)

    Article  Google Scholar 

  11. Cho, H., Seo, Y.W., Kumar, B.V., Rajkumar, R.R.: A multi-sensor fusion system for moving object detection and tracking in urban driving environments. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 1836–1843, IEEE (2014)

    Google Scholar 

  12. Cox, D.A., Little, J., O’shea, D.: Using algebraic geometry, vol. 185. Springer Science and Business Media, Berlin (2006)

    Google Scholar 

  13. Dong, W., Isler, V.: A novel method for the extrinsic calibration of a 2-d laser-rangefinder and camera. In: Proceedings of The IEEE International Conference on Robotics and Automation (ICRA), pp. 5104–5109, IEEE, Singapour (2017)

    Google Scholar 

  14. Fisher, R., Perkins, S., Walker, A., Wolfart, E.: Spatial filters-laplacian of gaussian (2003). http://homepages.inf.ed.ac.uk/rbf/HIPR2/log.htm

  15. Fremont, V., Rodriguez, F.S.A., Bonnifait, P.: Circular targets for 3d alignment of video and lidar sensors. J. Adv. Robot. 26(18), 2087–2113 (2012)

    Article  Google Scholar 

  16. Gao, W., Zhang, X., Yang, L., Liu, H.: An improved sobel edge detection. In: Proceedings of the 3rd IEEE International Computer Science and Information Technology (ICCSIT), vol. 5, pp. 67–71, IEEE, Chengdu, China (2010)

    Google Scholar 

  17. Guo, C.X., Roumeliotis, S.I.: An analytical least-squares solution to the line scan lidar-camera extrinsic calibration problem. In: Proceedings of the International Conference on Robotics and Automation (ICRA), pp. 2943–2948, Karlsruhe, Germany, IEEE (2013)

    Google Scholar 

  18. John, V., Long, Q., Liu, Z., Mita, S.: Automatic calibration and registration of lidar and stereo camera without calibration objects. In: Proceeding of the International Conference on Vehicular Electronics and Safety (ICVES), pp. 231–237, Yokohama, Japan (2015). https://doi.org/10.1109/ICVES.2015.7396923

  19. Li, Y., Ruichek, Y., Cappelle, C.: Optimal extrinsic calibration between a stereoscopic system and a lidar. IEEE Transactions on Instrumentation and Measurement 62(8), 2258–2269 (2013). https://doi.org/10.1109/TIM.2013.2258241

  20. Lourakis, M.I.: A brief description of the levenberg-marquardt algorithm implemented by Levmar. Found. Res. Technol. 4(1) (2005)

    Google Scholar 

  21. Maini, R.: Aggarwal H Study and comparison of various image edge detection techniques. Int. J. Image Process. (IJIP) 3(1), 1–11 (2009)

    Google Scholar 

  22. Mukhopadhyay, P., Chaudhuri, B.B.: A survey of hough transform. J. Pattern Recognit. 48(3), 993–1010 (2015)

    Article  Google Scholar 

  23. Naroditsky, O., Patterson, A., Daniilidis, K.: Automatic alignment of a camera with a line scan lidar system. In: Proceeding of the International Conference on Robotics and Automation (ICRA), pp. 3429–3434. IEEE, Shanghai, China (2011)

    Google Scholar 

  24. Núñez, P., Drews, Jr. P., Rocha, R.P., Dias, J.: Data fusion calibration for a 3d laser range finder and a camera using inertial data. In: Proceedings of the 4th European Conference on Mobile Robots (ECMR), pp. 31–36, Mlini/Dubrovnik, Croatia (2009)

    Google Scholar 

  25. Park, Y., Yun, S., Won, C.S., Cho, K., Um, K., Sim, S.: Calibration between color camera and 3d lidar instruments with a polygonal planar board. J. Sens. 14(3), 5333–5353 (2014)

    Article  Google Scholar 

  26. Rong, W., Li, Z., Zhang, W., Sun, L.: An improved canny edge detection algorithm. In: Proceedings of the International Conference on Mechatronics and Automation (ICMA), pp. 577–582, IEEE, Tianjin, China (2014)

    Google Scholar 

  27. Sanderson, C.: Armadillo: An open source c++ linear algebra library for fast prototyping and computationally intensive experiments. Technical report, NICTA (2010)

    Google Scholar 

  28. Shang, E., An, X., Shi, M., Meng, D., Li, J., Wu, T.: An efficient calibration approach for arbitrary equipped 3-d lidar based on an orthogonal normal vector pair. J. Intell. Robot. Syst. 79(1), 21–36 (2015)

    Article  Google Scholar 

  29. Trawny, N., Roumeliotis, S.I.: Indirect kalman filter for 3d attitude estimation. University of Minnesota, Department of Computer Science and Engineering, Technical report, Number 2005-002, Rev 57 2:2005 (2005)

    Google Scholar 

  30. Trawny, N., Zhou, X.S., Roumeliotis, S.I.: 3d relative pose estimation from six distances. In: Proceedings of the Robotics Science and Systems (RSS), Seattle, USA (2009)

    Google Scholar 

  31. Tulsuk, P., Srestasathiern, P., Ruchanurucks, M., Phatrapornnant, T., Nagahashi, H.: A novel method for extrinsic parameters estimation between a single-line scan lidar and a camera. In: Proceedings of the Intelligent Vehicles Symposium Proceedings, pp. 781–786, IEEE, Dearborn, MI, USA (2014)

    Google Scholar 

  32. Vasconcelos, F., Barreto, J.P., Nunes, U.: A minimal solution for the extrinsic calibration of a camera and a laser-rangefinder. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2097–2107 (2012)

    Article  Google Scholar 

  33. Zhou, L., Deng, Z.: A new algorithm for the establishing data association between a camera and a 2-d lidar. J. Sci. Technol. 19(3), 314–322 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mokhtar Bouain .

Editor information

Editors and Affiliations

Appendices

APPENDIX A

- The quaternion is generally defined as:

$$\begin{aligned} \bar{q}=q_{4}+q_{1}i+q_{2}j+q_{3}k \end{aligned}$$
(17)

where i, j, and k are hyper-imaginary numbers and the quantity \(q_{4}\) is the real or scalar part of the quaternion.

- To convert a 3D vector \(\overrightarrow{p}\) to quaternion form we use

$$\begin{aligned} \bar{p}=[\overrightarrow{p}0]^{T} \end{aligned}$$
(18)

-The product \( \overrightarrow{p}_{2}= R \overrightarrow{p}_{1} \) where \( \overrightarrow{p}_{1} \), \( \overrightarrow{p}_{2} \) are vectors, R is the rotation matrix and q its quaternion equivalent, can be written as follow

$$\begin{aligned} \bar{p}_{2}=q\otimes \bar{p}_{1}\otimes q^{-1} \end{aligned}$$
(19)

where \(\otimes \) presents quaternion multiplication, \(q^{-1}\) is the quaternion inverse defined as \(q^{-1}=[-q_{1}\,-q_{2}\,-q_{3}\,\,q_{4}]^{T}\).

-For any quaternions \(q_{a}\) and \(q_{b}\), the product, \(q_{a}\otimes q_{b}\) is defined as

$$\begin{aligned} q_{a}\otimes q_{b}\triangleq \mathcal {L}(q_{a})q_{b}=\mathcal {R}(q_{b})q_{a} \end{aligned}$$
(20)

Where:

$$\begin{aligned} \mathcal {L}(q)=\begin{bmatrix}q_{4}&-q_{3}&q_{2}&q_{1}\\ q_{3}&q_{4}&-q_{1}&q_{2}\\ -q_{2}&q_{1}&q_{4}&q_{3}\\ -q_{1}&-q_{2}&-q_{3}&q_{4} \end{bmatrix}\,\,\,\,\,\,\,\,\,\mathcal {R}(q)=\begin{bmatrix}q_{4}&q_{3}&-q_{2}&q_{1}\\ -q_{3}&q_{4}&q_{1}&q_{2}\\ q_{2}&-q_{1}&q_{4}&q_{3}\\ -q_{1}&-q_{2}&-q_{3}&q_{4} \end{bmatrix} \end{aligned}$$

Also we have following properties

$$\begin{aligned} \begin{aligned}&\mathcal {L}(q_{a})\mathcal {R}(q_{b})=\mathcal {R}(q_{b})\mathcal {L}(q_{a})\\&q_{b}^{T}\mathcal {L}(q_{a})^{T}=q_{b}^{T}\mathcal {R}(q_{a})^{T}\\&\mathcal {L}(q^{-1})=\mathcal {L}(q)^{T}\\&\mathcal {R}(q^{-1})=\mathcal {R}(q)^{T} \end{aligned} \end{aligned}$$

For more details, the interested reader is referred to [29].

APPENDIX B

In this appendix, we present an example to solve a polynomial system by computing the multiplication matrix based on the normal set approach.

Suppose that we have the following polynomial system:

$$\begin{aligned} f_{1} = x^2 y + x + 2 \end{aligned}$$
(21)
$$\begin{aligned} f_{2} = y^2 x+ y+ 6 \end{aligned}$$
(22)

The degrees of the above equations are:

$$\begin{aligned} degree(f_{1}) = 3 \qquad degree(f_{2})=3 \end{aligned}$$
(23)

By using the graded reverse lex ordering [12], the \(Gr\ddot{o}bner\) basis of this polynomial system is:

$$\begin{aligned} g_{1} = 3x - y \end{aligned}$$
(24)
$$\begin{aligned} g_{2} = y^3+3y+18 \end{aligned}$$
(25)

Therefore the normal set is:

$$\begin{aligned} NormalSet <= \left\{ 1,y,y^2 \right\} \end{aligned}$$
(26)

Without loss of generality, we have to determine the multiplication matrix in order to solve the polynomial system and find the roots. So, with some algebraic manipulations, the multiplication matrix associated to x is:

$$\begin{aligned} M_{x}= \begin{bmatrix} 0&\dfrac{1}{3}&0 \\ 0&0&\dfrac{1}{3} \\ -6&-1&0 \end{bmatrix} \end{aligned}$$
(27)

and the multiplication matrix associated to y is:

$$\begin{aligned} M_{y}= \begin{bmatrix} 0&1&0 \\ 0&0&1\\ -18&-3&0 \end{bmatrix} \end{aligned}$$
(28)

Finally, the roots can be computed by the eigenvalue decomposition of the multiplication matrix and hence the possible solutions (real and complex) of the polynomial system (21)–(22) are:

(29)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bouain, M., Berdjag, D., Fakhfakh, N., Ben Atitallah, R. (2020). A Comprehensive Approach for Camera/LIDAR Frame Alignment. In: Gusikhin, O., Madani, K. (eds) Informatics in Control, Automation and Robotics . ICINCO 2017. Lecture Notes in Electrical Engineering, vol 495. Springer, Cham. https://doi.org/10.1007/978-3-030-11292-9_38

Download citation

Publish with us

Policies and ethics