Skip to main content

A Multicopter Design Software Tool for Automated Generation of Simulation and Visualization Models

  • Conference paper
  • First Online:
Book cover Informatics in Control, Automation and Robotics (ICINCO 2017)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 495))

Abstract

Multicoptor unmanned aerial vehicles (UAVs) are popular robotics platforms in various research and applications fields. Research in robotics, control, estimation and computer vision relies heavily on open-source software and hardware to build custom UAV. This is motivated by lower cost of material and rapid development desire. The presented tool automates the task of obtaining realistic models for simulation and visualization of multicoptors using state-of-the-art Computer Aided Design engineering tools (CAD). Users interact with the software through a desktop application that offers interface to CAD tools, hardware database and simulation files generation. Custom models can be generated for three popular multirotor simulators. Modeling parameters accuracy has been validated using data of IRIS+ quadcopter model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mahony, R., Kumar, V., Corke, P.: Multirotor aerial vehicles. IEEE Robot. Autom. Mag. 20(32) (2012)

    Google Scholar 

  2. Domingues, J.M.B.: Quadrotor prototype. Uneversidade Tecnica deLisboa, Dissertacio (2009)

    Google Scholar 

  3. Corke, P.I.: A robotics toolbox for MATLAB. IEEE Robot. Autom. Mag. 3(1), 24–32 (1996)

    Article  Google Scholar 

  4. Rohmer, E., Singh, S.P., Freese, M.: V-REP: a versatile and scalable robot simulation framework. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1321–1326 (2013)

    Google Scholar 

  5. Simscape, MATLAB Toolbox. The MathWorks Inc, Natick, Massachusetts (2016)

    Google Scholar 

  6. Zhang, X., Li, X., Wang, K., Lu, Y.: A survey of modelling and identification of quadrotor robot. Abstr. Appl. Anal. 2014, 16 (2014)

    MATH  Google Scholar 

  7. Kuantama, E., Craciun, D., Tarca, I., Tarca, R.: Quadcopter propeller design and performance analysis. New Advances in Mechanisms, Mechanical Transmissions and Robotics, pp. 269–277. Springer International Publishing, Cham (2017)

    Chapter  Google Scholar 

  8. Kurowski, P.: Engineering Analysis with SolidWorks Simulation. SDC Publications, USA (2013)

    Google Scholar 

  9. Matsson, J.E.: An Introduction to SolidWorks Flow Simulation. SDC Publications, USA (2013)

    Google Scholar 

  10. Sa, I., Corke, P.: System identification, estimation and control for a cost effective open-source quadcopter. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 2202–2209 (2012)

    Google Scholar 

  11. Shen, H., Yang, Y., Zhang, J.: Solidworks API methods based on VB technology. Comput. Aided Eng. 4, 014 (2004)

    Google Scholar 

  12. Schneider, D.I.: An Introduction to Programming Using Visual Basic 2012. Prentice Hall Press, New Jersey (2013)

    Google Scholar 

  13. Koenig, N., Howard, A.: Design and use paradigms for gazebo, an open-source multi-robot simulator. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), vol. 3, pp. 2149–2154 (2004)

    Google Scholar 

  14. Meyer, J., Sendobry, A., Kohlbrecher, S., Klingauf, U., Von Stryk, O.: Comprehensive simulation of quadrotor UAVS using ROS and gazebo. In: International Conference on Simulation, Modeling, and Programming for Autonomous Robots, pp. 400–411. Springer, Berlin (2012)

    Chapter  Google Scholar 

  15. Kumar, V., Michael, N.: Opportunities and challenges with autonomous micro aerial vehicles. Int. J. Robot. Res. 31(11), 1279–1291 (2012)

    Article  Google Scholar 

  16. Jacobs, A.: What is all of the multi rotor hype about? (2014). https://quadquestions.com/blog/2014/11/07/hype/

  17. Alaimo, A., Artale, V., Milazzo, C., Ricciardello, A., Trefiletti, L.: Mathematical modeling and control of a hexacopter. In: International Conference on Unmanned Aircraft Systems (ICUAS), pp. 1043–1050. IEEE (2013)

    Google Scholar 

  18. Lee, H., Kim, S., Lim, H., Kim, H.J., Lee, D.: Control of an octa-copter from modeling to experiments. In: 44th International Symposium on Robotics (ISR), pp. 1–5. IEEE (2013)

    Google Scholar 

  19. Sabatino, F.: Quadrotor control: modeling, nonlinearcontrol design, and simulation. Thesis, EE, KTH (2015)

    Google Scholar 

  20. Solidworks API getting started overview (2017). https://www.solidworks.com/

  21. Hasan, B., Wikander, J., Onori, M.: Assembly design semantic recognition using solidworks-API. Int. J. Mech. Eng. Robot. Res. 5(4), 280–287 (2016)

    Google Scholar 

  22. Mathew, A.T., Rao, C.S.P.: A novel method of using API to generate liaison relationships from an assembly. J. Softw. Eng. Appl. 3(02), 167 (2010)

    Article  Google Scholar 

  23. Spens, M.: Automating Solidworks 2017 Using Macros. SDC Publications, USA (2017)

    Google Scholar 

  24. Shaqura, M., Shamma, J.: An automated quadcopter CAD based design and modeling platform using solidworks API and smart dynamic assembly. In: Proceedings of the 14th International Conference on Informatics in Control, Automation and Robotics : ICINCO, vol. 2, pp. 122–131. ISBN 978-989-758-264-6. https://doi.org/10.5220/0006438601220131 (2017)

  25. Carone, M.: Quadcopter Simulation and Control Made Easy. MathWorks Inc (2017)

    Google Scholar 

  26. Zhang, T., Su, S., Nguyen, H.T.: The hybrid bio-inspired aerial vehicle: concept and simscape flight simulation. In: IEEE 38th Annual International Conference of Engineering in Medicine and Biology, pp. 2107–2110. IEEE (2016)

    Google Scholar 

  27. Olivares Mendez, M.A., Kannan, S., Voos, H.: V-REP and ROS testbed for design, test, and tuning of a quadrotor vision based fuzzy control system for autonomous landing. In: Proceedings of the International Micro Air Vehicle Conference and Competition (2014)

    Google Scholar 

  28. Khalilov, J.: Interfacing simulink/MATLAB with V-rep for analysis and control synthesis of a quadrotor. Doctoral dissertation, Middle East Technical University (2016)

    Google Scholar 

  29. Spica, R., Claudio, G., Spindler, F., Giordano, P.R.: Interfacing MATLAB/simulink with V-REP for an easy development of sensor-based control algorithms for robotic platforms. In: IEEE International Conference on Robotics and Automation, Workshop on MATLAB/Simulink for Robotics Education and Research (2014)

    Google Scholar 

  30. Fum, W.Z.: Implementation of simulink controller design on iris+ quadrotor (Doctoral dissertation, Naval Postgraduate School, Monterey, California) (2015)

    Google Scholar 

  31. Quigley, M., et al.: ROS: an open-source robot operating system. In: IEEE International Conference on Robotics and Automation, Workshop on Open Source Software, vol. 3, No. 3.2, p. 5 (2009)

    Google Scholar 

  32. Furrer, F., Burri, M., Achtelik, M., Siegwart, R.: Rotors—a modular gazebo MAV simulator framework. Robot Operating System (ROS), pp. 595–625. Springer International Publishing, Cham (2016)

    Google Scholar 

  33. 3DRobotics (3DR), https://3dr.com/support/articles/iris/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Shaqura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shaqura, M., Shamma, J.S. (2020). A Multicopter Design Software Tool for Automated Generation of Simulation and Visualization Models. In: Gusikhin, O., Madani, K. (eds) Informatics in Control, Automation and Robotics . ICINCO 2017. Lecture Notes in Electrical Engineering, vol 495. Springer, Cham. https://doi.org/10.1007/978-3-030-11292-9_23

Download citation

Publish with us

Policies and ethics