Skip to main content

Leapfrogging to Sustainability: Utility-Scale Renewable Energy and Battery Storage Integration – Exposing the Opportunities Through the Lebanese Power System

  • Chapter
  • First Online:

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

The current status of the Lebanese power system is characterized by a structural power supply deficit and transmission and distribution inefficiencies. In this chapter, the Lebanese power system is used as a case in point to showcase the importance of shifting the foundations of conventional thinking in power system planning into a new paradigm where renewable energy is adopted as priority choice.

The technical and economic feasibility of wind farms, solar PV, and battery energy storage systems is studied. Simulations are run using Homer pro to optimize for the lowest cost of electricity. Results show that incorporating utility-scale renewable energy systems and battery energy storage can decrease the overall levelized cost of electricity (LCOE) to $c7/kWh. Furthermore, without the integration of considerable storage capacity, an economic limit of approximately 20–25% renewable energy penetration is reached.

Sensitivity analysis is undertaken while adopting various values for the cost of natural gas and internalizing the social cost of carbon. Results confirmed a positive correlation between the cost of carbon and the price of natural gas on the one hand and system renewable energy fraction on the other hand. Introducing demand side management and increased grid flexibility also showed a high level of sensitivity to both system LCOE and the renewable energy fraction.

Based on these results, the research strongly recommends that power system planning in the Middle East integrates modeling of renewable energy systems and the stacked benefits of utility-scale storage with the objective to achieve the highest combined technical, economic, and environmental benefits.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ardani, K., O’Shaughnessy, E., Fu, R., McClurg, C., Huneycutt, J., & Margolis, R. (2017). Installed cost benchmarks and deployment barriers for residential solar photovoltaics with energy storage: Q1 2016. NREL, Golden, Colorado, United States of America.

    Google Scholar 

  • Atlas, G. S. http://globalsolaratlas.info/downloads/lebanon. Accessed 11 Mar 2018.

  • Bassil, C. N. (2018). Pilot study to further assess the applicability of switching from conventional fuels to natural gas in the industrial sector in Lebanon, particularly in the industrial zones of Chekka and Zouk Mosbeh. SODEL – UNDP – MoEW, Beirut, Lebanon.

    Google Scholar 

  • Berckmans, G., Messagie, M., Smekens, J., Omar, N., Vanhaverbeke, L., & Van Mierlo, J. (2017). Cost Projection of State of the Art Lithium-Ion Batteries for Electric Vehicles Up to 2030. Energies, 10(12), 1314. https://doi.org/10.3390/en10091314.

    Article  Google Scholar 

  • Bistline, J. E. (2017). Economic and technical challenges of flexible operations under large-scale variable renewable deployment. Energy Economics, 64, 363–372. https://doi.org/10.1016/j.eneco.2017.04.012.

    Article  Google Scholar 

  • Bjerde, A., Covindassamy, A., Harnaide, M., Takahashi, M., & Araujo, A. (2008). Republic of Lebanon Electricity Sector Public Expenditure Review (trans: Region SDDMEANA). World Bank.

    Google Scholar 

  • Bouri, E., & El Assad, J. (2016). The Lebanese Electricity Woes: An Estimation of the Economical Costs of Power Interruptions. Energies, 9(12), 583. https://doi.org/10.3390/en9080583.

    Article  Google Scholar 

  • BP. (2018) BP energy outlook country and regional insights – Middle East. BP Energy Economics, London, United Kingdom. 

    Google Scholar 

  • CEC. (2014). Estimated cost of new renewable and fossil generation in California. California Energy Commission, California, United States of America.

    Google Scholar 

  • Chua, K. H., Lim, Y. S., & Morris, S. (2015). Cost-benefit assessment of energy storage for utility and customers: A case study in Malaysia. Energy Conversion and Management, 106, 1071–1081. https://doi.org/10.1016/j.enconman.2015.10.041.

    Article  Google Scholar 

  • CoM. (2018). Summary of the electricity sector in Lebanon. Presentation by Minister of Energy and Water to the Lebanese Council of Ministers, Beirut, Lebanon.

    Google Scholar 

  • Curry, C. (2017). Lithium-ion battery cost and market. BNEF, New York City, United States of America.

    Google Scholar 

  • Denholm, P., & Hand, M. (2011). Grid flexibility and storage required to achieve very high penetration of variable renewable electricity. Energy Policy, 39(3), 1817–1830. https://doi.org/10.1016/j.enpol.2011.01.019.

    Article  Google Scholar 

  • Denholm, P., & Margolis, R. M. (2007). Evaluating the limits of solar photovoltaics (PV) in traditional electric power systems. Energy Policy, 35(5), 2852–2861. https://doi.org/10.1016/j.enpol.2006.10.014.

    Article  Google Scholar 

  • Denholm, P., Novacheck, J., Jorgenson, J., & O’Connell, M. (2016). impact of flexibility options on grid economic carrying capacity of solar and wind: Three case studies. NREL, Golden, Colorado, United States of America.

    Google Scholar 

  • Denholm, P., Eichman, J., & Margolis, R. (2017). Evaluating the technical and economic performance of PV plus storage power plants. NREL, Golden, Colorado, United States of America.

    Google Scholar 

  • Denholm, P., Brinkman, G., & Mai, T. (2018). How low can you go? The importance of quantifying minimum generation levels for renewable integration. Energy Policy, 115, 249–257. https://doi.org/10.1016/j.enpol.2018.01.023.

    Article  Google Scholar 

  • Dent, S. (2017). Tesla completes its giant Australian Powerpack battery on time. https://www.engadget.com/2017/11/23/tesla-australia-powerpack-100-day-bet/. Accessed 31 Mar 2018.

  • EDF. (2008). Generartion and Transmission Master Plan for the ELectricity Sector – Generation Master Plan Report.

    Google Scholar 

  • eia. (2018). Cost and Performance Characteristics of New Generating Technologies, Annual Energy Outlook 2018. U.S. Energy Information Administration.

    Google Scholar 

  • El Hajj, R., Haddad, F. F., & El Karmouni, G. W. (2016). Perspectives. Middle East & North Africa: A Region Heating Up: Climate Change Activism in the Middle East and North Africa. Heinrich Böll Stiftung, Beirut, Lebanon.

    Google Scholar 

  • El-Fadel, R. H., Hammond, G. P., Harajli, H. A., Jones, C. I., Kabakian, V. K., & Winnett, A. B. (2010). The Lebanese electricity system in the context of sustainable development. Energy Policy, 38(2), 751–761. https://doi.org/10.1016/j.enpol.2009.10.020.

    Article  Google Scholar 

  • Eller, A., & Dehamna, A. (2017). Country forecasts for utility-scale energy storage utility-scale energy storage system capacity and revenue forecasts for leading countries. Navigant Research, Chicago, Illinois, United States.

    Google Scholar 

  • Feldman, D., Margolis, R., & Denholm, P. (2016). Exploring the potential competitiveness of utility-scale photovoltaics plus batteries with concentrating solar power, 2015–2030. NREL, Golden, Colorado, United States of America.

    Google Scholar 

  • Fitzgerald, G., Mandel, J., Morris, J., & Touati, H. (2015). The economics of battery energy storage how multi-use, customer-sited batteries deliver the most services and value to customers and the grid. Rocky Mountain Institute.

    Google Scholar 

  • Fraunhofer Institute for Solar Energy Systems I. (2017). Photovoltaics Report.

    Google Scholar 

  • Giorgio, A.D., Giuseppi, A., Liberati, F., & Pietrabissa, A. (2017). Controlled Electricity Distribution Network Black Start with Energy Storage System Support Paper presented at the 2017 25th Mediterranean Conference on Control and Automation (MED), Valletta, Malta.

    Google Scholar 

  • GoL. (2015). Lebanon’s intended nationally determined contribution under the United Nations framework convention on climate change. Government of Lebanon, Beirut, Lebanon.

    Google Scholar 

  • Gupta, M. (2017). Large-scale energy storage system price trends: 2012–2022. GTM Research.

    Google Scholar 

  • Hale, E. T., Stoll, B. L., & Novacheck, J. E. (2018). Integrating solar into Florida’s power system: Potential roles for flexibility. Solar Energy, 170, 741–751. https://doi.org/10.1016/j.solener.2018.05.045.

  • Harajli, H., Abou Joudeh, E., Obeid, J., Kodeih, W., & Harajli, M. (2011). Integrating wind energy into the Lebanese electricity system; Preliminary analysis on capacity credit and economic performance. Paper presented at the World Engineers’ Convention Geneva, Switzerland.

    Google Scholar 

  • Hassan, G. (2011). The National wind Atlas for Lebanon. UNDP CEDRO Project, Beirut, Lebanon.

    Google Scholar 

  • Hesse, H., Schimpe, M., Kucevic, D., & Jossen, A. (2017). Lithium-Ion Battery Storage for the Grid—A Review of Stationary Battery Storage System Design Tailored for Applications in Modern Power Grids. Energies, 10(12), 2107. https://doi.org/10.3390/en10122107.

    Article  Google Scholar 

  • Hittinger, E., & Azevedo, I. (2015). Bulk Energy Storage Increases United States Electricity System Emissions. Environmental Science and Technology, 49(5), 8. https://doi.org/10.1021/es505027p.

    Article  Google Scholar 

  • Hittinger, E., & Azevedo, I. (2017). Estimating the quantity of wind and solar required to displace storage-induced emissions. Environmental Science and Technology, 51(21), 12988–12997. https://doi.org/10.1021/acs.est.7b03286.

    Article  Google Scholar 

  • IEA. (2011). Modelling the capacity credit of renewable energy sources. OECD/IEA 2011, Paris, France.

    Google Scholar 

  • IEA/OECD/NEA. (2015). Projected Costs of Generating Electricity. Organisation for Economic Co-operation and Development/International Energy Agency and Organisation for Economic Co-operation and Development/Nuclear Energy Agency, Paris, France.

    Google Scholar 

  • IRENA. (2014). Pan-Arab Renewable Energy Strategy 2030: Roadmap of Actions for Implementation. IRENA, Abu Dhabi, United Arab Emirates.

    Google Scholar 

  • IRENA. (2016a). Renewable energy in the Arab Region. Overview of developments. Abu Dhabi: International Renewable Energy Agency.

    Google Scholar 

  • IRENA. (2016b). Renewable energy market analysis: The GCC region. Abu Dhabi: IRENA.

    Google Scholar 

  • IRENA. (2017). Electricity storage and renewables: Costs and markets to 2030. IRENA, Abu Dhabi, United Arab Emirates.

    Google Scholar 

  • IRENA. (2018). Renewable power generation costs in 2017. IRENA, Abu Dhabi, United Arab Emirates.

    Google Scholar 

  • Kirby, B., Ma, O., & O’Malley, M. (2013). The value of energy storage for grid applications. NREL, Golden, Colorado, United States of America.

    Google Scholar 

  • Kittner, N., Lill, F., & Kammen, D. M. (2017). Energy storage deployment and innovation for the clean energy transition. Nature Energy, 2(9), 17125. https://doi.org/10.1038/nenergy.2017.125.

    Article  Google Scholar 

  • Lai, C. S., & McCulloch, M. D. (2017). Levelized cost of electricity for solar photovoltaic and electrical energy storage. Applied Energy, 190, 191–203. https://doi.org/10.1016/j.apenergy.2016.12.153.

    Article  Google Scholar 

  • Lawder, M. T., Suthar, B., Northrop, P. W. C., De, S., Hoff, C. M., Leitermann, O., Crow, M. L., Santhanagopalan, S., & Subramanian, V. R. (2014). Battery Energy Storage System (BESS) and Battery Management System (BMS) for Grid-Scale Applications. Proceedings of the IEEE, 102(6), 1014–1030. https://doi.org/10.1109/jproc.2014.2317451.

    Article  Google Scholar 

  • Lazard. (2016). Lazard’s Levelized Cost of Storgae – Version 2.0.

    Google Scholar 

  • Lazard. (2017). Lazard’s Levelized Cost of Electricty – Version 11.0.

    Google Scholar 

  • LCEC. (2016). The national renewable energy action plan for the Republic of Lebanon 2016–2020. Lebanese Center for Energy Conversation, Beirut, Lebanon.

    Google Scholar 

  • LCEC. (2018). http://www.lcec.org.lb/en/LCEC/DownloadCenter/Others#page=1. Accessed 15 April 2018.

  • Lebanon turns to wind farms for electricity. (2018). The Daily Star. Beirut, Lebanon.

    Google Scholar 

  • Madaeni, S. H., Sioshansi, R., & Denholm, P. (2012). Comparison of capacity value methods for Photovoltaics in the Western United States. NREL, Golden, Colorado, United States of America.

    Google Scholar 

  • Markandya, A., Saygin, D., Miketa, A., Gielen, D., & Wagner, N. (2016). The true cost of fossil fuels: Saving on the externalities of air pollution and climate change. IRENA, Abu Dhabi, United Arab Emirates.

    Google Scholar 

  • McLaren, J., Gagnon, P., Anderson, K., Elgqvist, E., Fu, R., & Remo, T. (2016). Battery energy storage market: Commercial scale, lithium-ion projects in the U.S. NREL, Golden, Colorado, United States of America.

    Google Scholar 

  • MEW. (2010). Policy paper for the electricity sector. Ministry of Energy and Water, Beirut, Lebanon. 

    Google Scholar 

  • Mills, A., & Wiser, R. (2012). Changes in the economic value of variable generation at high penetration levels: A pilot case study of California. ​Berkeley, California, Unites States of America.

    Google Scholar 

  • MoE and UNDP. (2014). Strategic environmental assessment of Lebanon’s renewable energy sector. Ministry of Environment and United Nations Development Programme, Beirut, Lebanon.

    Google Scholar 

  • Müller, M., Viernstein, L., Truong, C. N., Eiting, A., Hesse, H. C., Witzmann, R., & Jossen, A. (2017). Evaluation of grid-level adaptability for stationary battery energy storage system applications in Europe. Journal of Energy Storage, 9, 1–11. https://doi.org/10.1016/j.est.2016.11.005.

    Article  Google Scholar 

  • Nordhaus, W. (2014). Estimates of the social cost of Carbon: Concepts and results from the DICE-2013R model and alternative approaches. Journal of the Association of Environmental and Resource Economists, 1(1/2), 273–312. https://doi.org/10.1086/676035.

    Article  Google Scholar 

  • NREL. (2012). Cost and performance data for power generation technologies. B&V, ​Overland Park, Kansas, United States.

    Google Scholar 

  • Poudineh, R., Sen, A., & Fattouh, B. (2018). Advancing renewable energy in resource-rich economies of the MENA. Renewable Energy, 123, 135–149. https://doi.org/10.1016/j.renene.2018.02.015.

    Article  Google Scholar 

  • REN21. (2018). Renewables 2018 Global Status Report.

    Google Scholar 

  • Roberts, D. (2017). Elon Musk bet that Tesla could build the world’s biggest battery in 100 days. He won. https://www.vox.com/energy-and-environment/2017/11/28/16709036/elon-musk-biggest-battery-100-days. Accessed 31 March 2018.

  • Schmidt, O., Hawkes, A., Gambhir, A., & Staffell, I. (2017). The future cost of electrical energy storage based on experience rates. Nature Energy, 2(8), 17110. https://doi.org/10.1038/nenergy.2017.110.

    Article  Google Scholar 

  • Spector, J. (2017). Tesla Fulfilled Its 100-Day Australia Battery Bet. What’s That Mean for the Industry? https://www.greentechmedia.com/articles/read/tesla-fulfills-australia-battery-bet-whats-that-mean-industry#gs.KGhHkfQ. Accessed 31 March 2018.

  • Stroe, D.-I., Knap, V., Swierczynski, M., Stroe, A.-I., & Teodorescu, R. (2017). Operation of a Grid-Connected Lithium-Ion Battery Energy Storage System for Primary Frequency Regulation: A Battery Lifetime Perspective. IEEE Transactions on Industry Applications, 53(1), 430–438. https://doi.org/10.1109/tia.2016.2616319.

    Article  Google Scholar 

  • UNDP. (2017). LEBANON: Derisking Renewable Energy Investment. United Nations Development Programme, New York, NY.

    Google Scholar 

  • Wolfe, P. R. (2018). Utility-Scale Solar Power. 1073–1093. https://doi.org/10.1016/b978-0-12-809921-6.00030-6.

  • Wright, T. P. (1936). Factors Affecting the Cost of Airplanes. Journal of the Aeronautical Sciences, 3(4), 7–128. https://doi.org/10.2514/8.155.

    Article  Google Scholar 

  • Yekini Suberu, M., Wazir Mustafa, M., & Bashir, N. (2014). Energy storage systems for renewable energy power sector integration and mitigation of intermittency. Renewable and Sustainable Energy Reviews, 35, 499–514. https://doi.org/10.1016/j.rser.2014.04.009.

    Article  Google Scholar 

  • Zeh, A., Müller, M., Naumann, M., Hesse, H., Jossen, A., & Witzmann, R. (2016). Fundamentals of Using Battery Energy Storage Systems to Provide Primary Control Reserves in Germany. Batteries, 2(3), 29. https://doi.org/10.3390/batteries2030029.

    Article  Google Scholar 

  • Zheng, C., & Kammen, D. M. (2014). An innovation-focused roadmap for a sustainable global photovoltaic industry. Energy Policy, 67, 159–169. https://doi.org/10.1016/j.enpol.2013.12.006.

    Article  Google Scholar 

  • Zou, P., Chen, Q., Xia, Q., He, G., & Kang, C. (2016). Evaluating the Contribution of Energy Storages to Support Large-Scale Renewable Generation in Joint Energy and Ancillary Service Markets. IEEE Transactions on Sustainable Energy, 7(2), 808–818. https://doi.org/10.1109/tste.2015.2497283.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Annex 1: Key parameters adopted in the Homer Pro model

Annex 1: Key parameters adopted in the Homer Pro model

Conventional generation units’ parameters

Parameter

CCGT

OCGT

Lifetime

25 years

25 years

Capital expenditure

1080 $/kW

835 $/kW

Fixed operation costs

17.7 $/kW-year

11.81 $/kW-year

Variable operation costs

2.6 $/MWh

13.6 $/MWh

Installation time

31.75 months

27 months

Heat rate

6591 BTU/kWh

9697 BTU/kWh

Minimum load

50%, 40%, 30%

10%

Renewable energy generation parameters

Parameter

Solar PV plant

Wind farms

Lifetime

25 years

25 years

Capital expenditure

565 $/kW

1400 $/kW

Fixed operation costs

11 $/kW

2% of capital cost

Capacity factor

19.40%

37%

Specific yield

1700 kWh/kWp

3241 kWh/kWp

Inverter efficiency

98%

Derating factor

88%

Overall loss factor (wake effect, availability, electrical, and others)

20%

Hub height

84 meters

ESS parameters

Parameter

Value

Lifetime

15 years

Capital expenditure

315 $/kWh

Fixed operation costs

1% of Capex

Replacement cost

145 $/kWh

Minimum state of charge

10%

Rectifier efficiency

98%

Derating limit

30% of initial capacity

Main simulation and financial parameters and constraints

Parameter

Main inputs

Project lifetime

25 years

Effective interest rate (adjusted for inflation)

12% per year

Inflation rate

2% per year

Percentage of unmet load

0%

Dispatch strategy

Load Following or Cycle Charging

Optimization objective

Economic minimization

Minimum spinning reserve

10% of instantaneous load +10% of instantaneous PV output +10% of instantaneous wind power output

  1. References for above assumptions: (IEA/OECD/NEA 2015; NREL 2012; CEC 2014; eia 2018; Lazard 2017)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Diab, A., Harajli, H., Ghaddar, N. (2019). Leapfrogging to Sustainability: Utility-Scale Renewable Energy and Battery Storage Integration – Exposing the Opportunities Through the Lebanese Power System. In: Qudrat-Ullah, H., Kayal, A. (eds) Climate Change and Energy Dynamics in the Middle East. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-11202-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11202-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11201-1

  • Online ISBN: 978-3-030-11202-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics