Skip to main content

Climate Change and Energy Decision Aid Systems for the Case of Egypt

  • Chapter
  • First Online:
Climate Change and Energy Dynamics in the Middle East

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

Energy is always conserved, and it cannot be destroyed nor created; it can only be transformed from one form to another. Determining which forms are more useful is strongly influenced by climate change. Moreover, the growth of energy production and consumption is strongly affecting and being affected by the climate change in many aspects. In warmer countries, such as Egypt, climate change is expected to have an even larger impact on different energy forms demand. However, since economic, technical, and environmental energy concerns change from country to another, addressing the impact of both current climate and future climate changes on demand should be worked out by decision-makers in accordance with the country policies and geographical conditions. This work is concerned with how experts should best characterize such uncertainties for decision-makers of climate change scenarios including changes in mean climate characteristics as well as changes in the frequency and duration of weather events in Egypt. It also provides decision aid in developing climate action plans and selecting the most suitable mechanisms in correspondence to energy demands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdallah, M., Asfour, S., & Veziroglu, T. (1999). Solar–hydrogen energy system for Egypt. International Journal of Hydrogen Energy, 24, 505–517.

    Article  Google Scholar 

  • Abdulrahman, A. O., Huisingh, D., & Hafkamp, W. (2015). Sustainability improvements in Egypt’s oil & gas industry by implementation of flare gas recovery. Journal of Cleaner Production, 98, 116–122.

    Article  Google Scholar 

  • Acker, T. L., Williams, S. K., Duque, E. P., Brummels, G., & Buechler, J. (2007). Wind resource assessment in the state of Arizona: Inventory, capacity factor, and cost. Renewable Energy, 32, 1453–1466.

    Article  Google Scholar 

  • Ackermann, T., & Söder, L. (2002). An overview of wind energy-status 2002. Renewable and Sustainable Energy Reviews, 6, 67–127.

    Article  Google Scholar 

  • Agbossou, K., Kolhe, M., Hamelin, J., & Bose, T. K. (2004). Performance of a stand-alone renewable energy system based on energy storage as hydrogen. IEEE Transactions on Energy Conversion, 19, 633–640.

    Article  Google Scholar 

  • Agrawala, S., Moehner, A., El Raey, M., Conway, D., Van Aalst, M., Hagenstad, M., & Smith, J. (2004). Development and climate change in Egypt: Focus on coastal resources and the Nile. Paris: Organisation for Economic Co-operation and Development.

    Google Scholar 

  • Alamdari, P., Nematollahi, O., & Mirhosseini, M. (2012). Assessment of wind energy in Iran: A review. Renewable and Sustainable Energy Reviews, 16, 836–860.

    Article  Google Scholar 

  • Alamdari, P., Nematollahi, O., & Alemrajabi, A. A. (2013). Solar energy potentials in Iran: A review. Renewable and Sustainable Energy Reviews, 21, 778–788.

    Article  Google Scholar 

  • Apergis, N., & Payne, J. E. (2009). Energy consumption and economic growth in Central America: Evidence from a panel cointegration and error correction model. Energy Economics, 31, 211–216.

    Article  Google Scholar 

  • Arndt, C., & Thurlow, J. (2015). Climate uncertainty and economic development: Evaluating the case of Mozambique to 2050. Climatic Change, 130, 63–75.

    Article  Google Scholar 

  • Arndt, C., Robinson, S., & Willenbockel, D. (2011). Ethiopia’s growth prospects in a changing climate: A stochastic general equilibrium approach. Global Environmental Change, 21, 701–710.

    Article  Google Scholar 

  • Arndt, C., Chinowsky, P., Strzepek, K., & Thurlow, J. (2012). Climate change, growth and infrastructure investment: The case of Mozambique. Review of Development Economics, 16, 463–475.

    Article  Google Scholar 

  • Barbour, E., Wilson, I. G., Radcliffe, J., Ding, Y., & Li, Y. (2016). A review of pumped hydro energy storage development in significant international electricity markets. Renewable and Sustainable Energy Reviews, 61, 421–432.

    Article  Google Scholar 

  • Bates, B. (2009). Climate change and water: IPCC technical paper VI, World Health Organization.

    Google Scholar 

  • Beinat, E. (1997). Value functions for environmental management. Netherlands: Springer.

    Book  MATH  Google Scholar 

  • Ben-Haim, Y. (2001). Information-gap decision theory: Decisions under severe uncertainty. London: Academic Press.

    MATH  Google Scholar 

  • Bernstein, L., Bosch, P., Canziani, O., Chen, Z., Christ, R., & Riahi, K. (2008). IPCC, 2007: Climate change 2007: Synthesis report. IPCC.

    Google Scholar 

  • Berrang-Ford, L., Ford, J. D., & Paterson, J. (2011). Are we adapting to climate change? Global Environmental Change, 21, 25–33.

    Article  Google Scholar 

  • Biagini, B., Bierbaum, R., Stults, M., Dobardzic, S., & Mcneeley, S. M. (2014). A typology of adaptation actions: A global look at climate adaptation actions financed through the global environment facility. Global Environmental Change, 25, 97–108.

    Article  Google Scholar 

  • Bianchi, F. D., Mantz, R. J., & De Battista, H. (2007). The wind and wind turbines. London: Springer.

    Book  Google Scholar 

  • Boyle, G. (2004). Renewable energy. Renewable Energy, by Edited by Godfrey Boyle, pp. 456. Oxford University Press, May 2004. ISBN-10: 0199261784. ISBN-13: 9780199261789, 456.

    Google Scholar 

  • Brown, O., Hammill, A., & Mcleman, R. (2007). Climate change as the ‘new’ security threat: Implications for Africa. International Affairs, 83, 1141–1154.

    Article  Google Scholar 

  • Cairns, A. J. (2000). A discussion of parameter and model uncertainty in insurance. Insurance: Mathematics and Economics, 27, 313–330.

    MATH  Google Scholar 

  • Campbell-Lendrum, D., & Corvalán, C. (2007). Climate change and developing-country cities: Implications for environmental health and equity. Journal of Urban Health, 84, 109–117.

    Article  Google Scholar 

  • Cancino-Solórzano, Y., Villicaña-Ortiz, E., Gutiérrez-Trashorras, A. J., & Xiberta-Bernat, J. (2010). Electricity sector in Mexico: Current status. Contribution of renewable energy sources. Renewable and Sustainable Energy Reviews, 14, 454–461.

    Article  Google Scholar 

  • Cancino-Solórzano, Y., Paredes-Sánchez, J. P., Gutiérrez-Trashorras, A. J., & Xiberta-Bernat, J. (2016). The development of renewable energy resources in the state of Veracruz, Mexico. Utilities Policy, 39, 1–4.

    Article  Google Scholar 

  • Celik, A. N. (2007). A techno-economic analysis of wind energy in southern Turkey. International Journal of Green Energy, 4, 233–247.

    Article  Google Scholar 

  • Change, C. (1995). Intergovernmental panel on climate change (IPCC). Cambridge: Cambridge University Press.

    Google Scholar 

  • Change, I. P. O. C. (2015). Climate change 2014: Mitigation of climate change. Cambridge: Cambridge University Press.

    Google Scholar 

  • Chu, S., & Majumdar, A. (2012). Opportunities and challenges for a sustainable energy future. Nature, 488, 294–303.

    Article  Google Scholar 

  • Conway, D. (1996). The impacts of climate variability and future climate change in the Nile Basin on water resources in Egypt. International Journal of Water Resources Development, 12, 277–296.

    Article  Google Scholar 

  • Conway, D., & Hulme, M. (1993). Recent fluctuations in precipitation and runoff over the Nile sub-basins and their impact on main Nile discharge. Climatic Change, 25, 127–151.

    Article  Google Scholar 

  • Conway, D., Krol, M., Alcamo, J., & Hulme, M. (1996). Future availability of water in Egypt: The interaction of global, regional, and basin scale driving forces in the Nile Basin. Ambio, 336–342.

    Google Scholar 

  • Costello, A., Abbas, M., Allen, A., Ball, S., Bell, S., Bellamy, R., Friel, S., Groce, N., Johnson, A., & Kett, M. (2009). Managing the health effects of climate change: Lancet and University College London Institute for Global Health Commission. The Lancet, 373, 1693–1733.

    Article  Google Scholar 

  • Council, W. E. (2017). Energy resources: Hydropower.

    Google Scholar 

  • Couture, T., & Gagnon, Y. (2010). An analysis of feed-in tariff remuneration models: Implications for renewable energy investment. Energy Policy, 38, 955–965.

    Article  Google Scholar 

  • Creutzig, F., Roy, J., Lamb, W. F., Azevedo, I. M., De Bruin, W. B., Dalkmann, H., Edelenbosch, O. Y., Geels, F. W., Grubler, A., & Hepburn, C. (2018). Towards demand-side solutions for mitigating climate change. Nature Climate Change, 8, 268.

    Article  Google Scholar 

  • Davis, S. J., & Caldeira, K. (2010). Consumption-based accounting of CO2 emissions. Proceedings of the National Academy of Sciences, 107, 5687–5692.

    Article  Google Scholar 

  • Davis, S. J., Caldeira, K., & Matthews, H. D. (2010). Future CO2 emissions and climate change from existing energy infrastructure. Science, 329, 1330–1333.

    Article  Google Scholar 

  • Di Baldassarre, G., Elshamy, M., Van Griensven, A., Soliman, E., Kigobe, M., Ndomba, P., Mutemi, J., Mutua, F., Moges, S., & Xuan, Y. (2011). Future hydrology and climate in the River Nile basin: A review. Hydrological Sciences Journal–Journal des Sciences Hydrologiques, 56, 199–211.

    Article  Google Scholar 

  • Dincer, I. (2000). Renewable energy and sustainable development: A crucial review. Renewable and Sustainable Energy Reviews, 4, 157–175.

    Article  Google Scholar 

  • Draper, D. (1995). Assessment and propagation of model uncertainty. Journal of the Royal Statistical Society. Series B (Methodological), 57, 45–97.

    Article  MathSciNet  MATH  Google Scholar 

  • Eckaus, R. S. (1992). Comparing the effects of greenhouse gas emissions on global warming. The Energy Journal, 25–35.

    Google Scholar 

  • Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Seyboth, K., Matschoss, P., Kadner, S., Zwickel, T., Eickemeier, P., Hansen, G., & Schlömer, S. (2011). IPCC special report on renewable energy sources and climate change mitigation. Prepared by Working Group III of the intergovernmental panel on climate Change, Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Edwards, P. N. (2001). Representing the global atmosphere: Computer models, data, and knowledge about climate change. In C. A. Miller & P. N. Edwards (Eds.), Changing the atmosphere: Expert knowledge and environmental governance (pp. 31–36). Cambridge: MIT Press.

    Google Scholar 

  • El-Katiri, L. (2014). A roadmap for renewable energy in the Middle East and North Africa. Oxford Institute for Energy Studies. ISBN 978-1-907555-90-9 

    Google Scholar 

  • Ellabban, O., Abu-Rub, H., & Blaabjerg, F. (2014). Renewable energy resources: Current status, future prospects and their enabling technology. Renewable and Sustainable Energy Reviews, 39, 748–764.

    Article  Google Scholar 

  • El-Metwally, M. (2005). Sunshine and global solar radiation estimation at different sites in Egypt. Journal of Atmospheric and Solar-Terrestrial Physics, 67, 1331–1342.

    Article  Google Scholar 

  • Enkvist, P., Nauclér, T., & Rosander, J. (2007). A cost curve for greenhouse gas reduction. McKinsey Quarterly, 1, 34.

    Google Scholar 

  • Eom, H. B. (1989). The current state of multiple criteria decision support systems. Human Systems Management, 8, 113–119.

    Google Scholar 

  • Esso, L. J. (2010). Threshold cointegration and causality relationship between energy use and growth in seven African countries. Energy Economics, 32, 1383–1391.

    Article  Google Scholar 

  • Fahmy, M., Mahdy, M. M., & Nikolopoulou, M. (2014). Prediction of future energy consumption reduction using GRC envelope optimization for residential buildings in Egypt. Energy and Buildings, 70, 186–193.

    Article  Google Scholar 

  • Fankhauser, S., & Burton, I. (2011). Spending adaptation money wisely. Climate Policy, 11, 1037–1049.

    Article  Google Scholar 

  • Field, C. B., Barros, V. R., Dokken, D., Mach, K., Mastrandrea, M., Bilir, T., Chatterjee, M., Ebi, K., Estrada, Y., & Genova, R. (2014). IPCC, 2014: Climate change 2014: Impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. Contribution of Working Group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

    Google Scholar 

  • Fischer, C. (2008). Feedback on household electricity consumption: A tool for saving energy? Energy Efficiency, 1, 79–104.

    Article  Google Scholar 

  • Frondel, M., Ritter, N., Schmidt, C. M., & Vance, C. (2010). Economic impacts from the promotion of renewable energy technologies: The German experience. Energy Policy, 38, 4048–4056.

    Article  Google Scholar 

  • Garces, L. J., Liu, Y., & Bose, S. (2007). System and method for integrating wind and hydroelectric generation and pumped hydro energy storage systems. Google Patents.

    Google Scholar 

  • Garlappi, L., Uppal, R., & Wang, T. (2006). Portfolio selection with parameter and model uncertainty: A multi-prior approach. The Review of Financial Studies, 20, 41–81.

    Article  Google Scholar 

  • Genç, M. S., & Gökçek, M. (2009). Evaluation of wind characteristics and energy potential in Kayseri, Turkey. Journal of Energy Engineering, 135, 33–43.

    Article  Google Scholar 

  • Ghosh, S. (2002). Electricity consumption and economic growth in India. Energy Policy, 30, 125–129.

    Article  Google Scholar 

  • Gibelin, A.-L., & Déqué, M. (2003). Anthropogenic climate change over the Mediterranean region simulated by a global variable resolution model. Climate Dynamics, 20, 327–339.

    Article  Google Scholar 

  • Giddings, B., Hopwood, B., & O’Brien, G. (2002). Environment, economy and society: Fitting them together into sustainable development. Sustainable Development, 10, 187–196.

    Article  Google Scholar 

  • Giles, J. (2002). Scientific uncertainty: When doubt is a sure thing. Nature Publishing Group. https://doi.org/10.1038/418476a

  • Gleick, P. H. (1991). The vulnerability of runoff in the Nile Basin to climatic changes. Environmental Professional, 13, 66–73.

    Google Scholar 

  • Gökçek, M., Bayülken, A., & Bekdemir, Ş. (2007). Investigation of wind characteristics and wind energy potential in Kirklareli, Turkey. Renewable Energy, 32, 1739–1752.

    Article  Google Scholar 

  • Gölçek, M., Erdem, H. H., & Bayülken, A. (2007). A techno-economical evaluation for installation of suitable wind energy plants in Western Marmara, Turkey. Energy Exploration & Exploitation, 25, 407–427.

    Article  Google Scholar 

  • Gregory, J. Projections of sea level rise.

    Google Scholar 

  • Griffiths, S. (2013). Strategic considerations for deployment of solar photovoltaics in the Middle East and North Africa. Energy Strategy Reviews, 2, 125–131.

    Article  Google Scholar 

  • Grimm, A. M., Sahai, A. K., & Ropelewski, C. F. (2006). Interdecadal variations in AGCM simulation skills. Journal of Climate, 19, 3406–3419.

    Article  Google Scholar 

  • Grubb, M., Delay, T., Willan, C., & Counsell, T. (2009). Global carbon mechanisms: Emerging lessons and implications.

    Google Scholar 

  • Gualberti, G., Singer, C. E., & Bazilian, M. (2013). The capacity to spend development funds in the energy sector. Utilities Policy, 26, 36–44.

    Article  Google Scholar 

  • Gustavsson, L., Börjesson, P., Johansson, B., & Svenningsson, P. (1995). Reducing CO2 emissions by substituting biomass for fossil fuels. Energy, 20, 1097–1113.

    Article  Google Scholar 

  • Hansen, J., Sato, M., Ruedy, R., Lacis, A., & Oinas, V. (2000). Global warming in the twenty-first century: An alternative scenario. Proceedings of the National Academy of Sciences, 97, 9875–9880.

    Article  Google Scholar 

  • Hansen, J., Sato, M., Hearty, P., Ruedy, R., Kelley, M., Masson-Delmotte, V., Russell, G., Tselioudis, G., Cao, J., & Rignot, E. (2016). Ice melt, sea level rise and superstorms: Evidence from paleoclimate data, climate modeling, and modern observations that 2 C global warming could be dangerous. Atmospheric Chemistry and Physics, 16, 3761–3812.

    Article  Google Scholar 

  • Hartmann, H. C., Pagano, T. C., Sorooshian, S., & Bales, R. (2002). Confidence builders: Evaluating seasonal climate forecasts from user perspectives. Bulletin of the American Meteorological Society, 83, 683–698.

    Article  Google Scholar 

  • Hassaan, M., & Abdrabo, M. (2014). Stakeholder analysis: Nile Delta and climate Change. (ARCA) Alexandria Research Center for Adaptation to climate Change. Alexandria.

    Google Scholar 

  • Hastik, R., Basso, S., Geitner, C., Haida, C., Poljanec, A., Portaccio, A., Vrščaj, B., & Walzer, C. (2015). Renewable energies and ecosystem service impacts. Renewable and Sustainable Energy Reviews, 48, 608–623.

    Article  Google Scholar 

  • Hibbard, K. A., & Janetos, A. C. (2013). The regional nature of global challenges: A need and strategy for integrated regional modeling. Climatic Change, 118, 565–577.

    Article  Google Scholar 

  • Hoffert, M. I., Caldeira, K., Benford, G., Criswell, D. R., Green, C., Herzog, H., Jain, A. K., Kheshgi, H. S., Lackner, K. S., & Lewis, J. S. (2002). Advanced technology paths to global climate stability: Energy for a greenhouse planet. Science, 298, 981–987.

    Article  Google Scholar 

  • Holdren, J. P., Smith, K. R., Kjellstrom, T., Streets, D., Wang, X., & Fischer, S. (2000). Energy, the environment and health. New York: United Nations Development Programme.

    Google Scholar 

  • Hopwood, B., Mellor, M., & O’Brien, G. (2005). Sustainable development: Mapping different approaches. Sustainable Development, 13, 38–52.

    Article  Google Scholar 

  • Houghton, J. T., Ding, Y., Griggs, D., Noguer, M., Van Der Linden, P., Dai, X., Maskell, K. & Johnson, C. (2001). Contribution of Working Group I to the third assessment report of the intergovernmental panel on climate change. Climate change 2001: The scientific basis, 388.

    Google Scholar 

  • Ibrahim, S. M. (1985). Predicted and measured global solar radiation in Egypt. Solar Energy, 35, 185–188.

    Article  Google Scholar 

  • Jacobsson, S., Sandén, B., & Bångens, L. (2004). Transforming the energy system—The evolution of the German technological system for solar cells. Technology Analysis & Strategic Management, 16, 3–30.

    Article  Google Scholar 

  • Jain, P. (2011). Wind energy engineering. New York: McGraw-Hill.

    Google Scholar 

  • Kay, A., Davies, H., Bell, V., & Jones, R. (2009). Comparison of uncertainty sources for climate change impacts: Flood frequency in England. Climatic Change, 92, 41–63.

    Article  Google Scholar 

  • Kazem, H. A., & Chaichan, M. T. (2012). Status and future prospects of renewable energy in Iraq. Renewable and Sustainable Energy Reviews, 16, 6007–6012.

    Article  Google Scholar 

  • Kharin, V. V., & Zwiers, F. W. (2002). Climate predictions with multimodel ensembles. Journal of Climate, 15, 793–799.

    Article  Google Scholar 

  • Kraucunas, I., Clarke, L., Dirks, J., Hathaway, J., Hejazi, M., Hibbard, K., Huang, M., Jin, C., Kintner-Meyer, M., & Van Dam, K. K. (2015). Investigating the nexus of climate, energy, water, and land at decision-relevant scales: The platform for regional integrated modeling and analysis (PRIMA). Climatic Change, 129, 573–588.

    Article  Google Scholar 

  • Lashof, D. A., & Ahuja, D. R. (1990). Relative contributions of greenhouse gas emissions to global warming. Nature, 344, 529–531.

    Article  Google Scholar 

  • Laube, W., Schraven, B., & Awo, M. (2012). Smallholder adaptation to climate change: Dynamics and limits in northern Ghana. Climatic Change, 111, 753–774.

    Article  Google Scholar 

  • Lempert, R., Nakicenovic, N., Sarewitz, D., & Schlesinger, M. (2004). Characterizing climate-change uncertainties for decision-makers. An editorial essay. Climatic Change, 65, 1–9.

    Article  Google Scholar 

  • Lewis, J. I., & Wiser, R. H. (2007). Fostering a renewable energy technology industry: An international comparison of wind industry policy support mechanisms. Energy Policy, 35, 1844–1857.

    Article  Google Scholar 

  • Lombardi, P., Sokolnikova, T., Suslov, K., Voropai, N., & Styczynski, Z. (2016). Isolated power system in Russia: A chance for renewable energies? Renewable Energy, 90, 532–541.

    Article  Google Scholar 

  • Loulou, R., Goldstein, G., & Noble, K. (2004). Documentation for the MARKAL family of models. Energy Technology Systems Analysis Programme.

    Google Scholar 

  • Lu, X., McElroy, M. B., & Kiviluoma, J. (2009). Global potential for wind-generated electricity. Proceedings of the National Academy of Sciences, 106, 10933–10938.

    Article  Google Scholar 

  • Luickx, P. J., Delarue, E. D., & D’HAESELEER, W. D. (2008). Considerations on the backup of wind power: Operational backup. Applied Energy, 85, 787–799.

    Article  Google Scholar 

  • Mahmoud, A. H. A. (2011). An analysis of bioclimatic zones and implications for design of outdoor built environments in Egypt. Building and Environment, 46, 605–620.

    Article  Google Scholar 

  • Mannke, F. (2011). Key themes of local adaptation to climate change: Results from mapping community-based initiatives in Africa. In Experiences of climate change adaptation in Africa (pp. 17–32). Hamburg: Springer.

    Chapter  Google Scholar 

  • McElroy, M. B. (2016). Energy and climate: Vision for the future. Oxford: Oxford University Press.

    Google Scholar 

  • Meehl, G. A., Stocker, T. F., Collins, W. D., Friedlingstein, P., Gaye, T., Gregory, J. M., Kitoh, A., Knutti, R., Murphy, J. M. & Noda, A. 2007. Global climate projections.

    Google Scholar 

  • Meinshausen, M., Meinshausen, N., Hare, W., Raper, S. C., Frieler, K., Knutti, R., Frame, D. J., & Allen, M. R. (2009). Greenhouse-gas emission targets for limiting global warming to 2 C. Nature, 458, 1158–1162.

    Article  Google Scholar 

  • Mendelsohn, R. (2008). The impact of climate change on agriculture in developing countries. Journal of Natural Resources Policy Research, 1, 5–19.

    Article  Google Scholar 

  • Mendonça, M. (2009). Feed-in tariffs: Accelerating the deployment of renewable energy. New York: Routledge.

    Google Scholar 

  • Metz, B., Davidson, O., Swart, R., & Pan, J. (2001). Climate change 2001: Mitigation: Contribution of Working Group III to the third assessment report of the intergovernmental panel on climate Change. New York: Cambridge University Press.

    Google Scholar 

  • Moore, J. W., & Semmens, B. X. (2008). Incorporating uncertainty and prior information into stable isotope mixing models. Ecology Letters, 11, 470–480.

    Article  Google Scholar 

  • Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., Van Vuuren, D. P., Carter, T. R., Emori, S., Kainuma, M., & Kram, T. (2010). The next generation of scenarios for climate change research and assessment. Nature, 463, 747–756.

    Article  Google Scholar 

  • Mostafaeipour, A., & Mostafaeipour, N. (2009). Renewable energy issues and electricity production in Middle East compared with Iran. Renewable and Sustainable Energy Reviews, 13, 1641–1645.

    Article  Google Scholar 

  • Nakicenovic, N. (2010). World development report 2010: Development and climate change. Washington, DC: The International Bank for Reconstruction and Development/The World Bank.

    Google Scholar 

  • Nakicenovic, N., Alcamo, J., Davis, G., De Vries, B., Fenhann, J., Gaffin, S., Gregory, K., Grübler, A., Jung, T. Y., & Kram, T. (2000a). Special report on emissions scenarios, Working Group III, intergovernmental panel on climate Change (IPCC). Cambridge: Cambridge University Press. 595pp. ISBN 0, 521, 0.

    Google Scholar 

  • Nakicenovic, N., Alcamo, J., Davis, G., Vries, B., Fenhann, J., Gaffin, S., Gregory, K., Grübler, A., Jung, T. Y., & Kram, T. (2000b). IPCC special report on emissions scenarios (p. 599). Cambridge: Cambridge University Press.

    Google Scholar 

  • Nakicenovic, N., Alcamo, J., Grubler, A., Riahi, K., Roehrl, R., Rogner, H.-H., & Victor, N. (2000c). Special report on emissions scenarios (SRES), a special report of Working Group III of the intergovernmental panel on climate change. Cambridge: Cambridge University Press.

    Google Scholar 

  • Nicholls, R., Hanson, S., Lowe, J., Warrick, R., Lu, X., Long, A., & Carter, T. (2011). Constructing Sea-level scenarios for impact and adaptation assessment of coastal areas: A guidance document. supporting material, Intergovernmental Panel on Climate Change task group on data and scenario support for impact and climate analysis (TGICA) 47.

    Google Scholar 

  • Pacesila, M., Burcea, S. G., & Colesca, S. E. (2016). Analysis of renewable energies in European Union. Renewable and Sustainable Energy Reviews, 56, 156–170.

    Article  Google Scholar 

  • Pachauri, R. K., & Reisinger, A. (2007). Synthesis report. Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 151–165.

    Google Scholar 

  • Palmer, T., Doblas-Reyes, F., Weisheimer, A., & Rodwell, M. (2008). Toward seamless prediction: Calibration of climate change projections using seasonal forecasts. Bulletin of the American Meteorological Society, 89, 459–470.

    Article  Google Scholar 

  • Panwar, N., Kaushik, S., & Kothari, S. (2011). Role of renewable energy sources in environmental protection: A review. Renewable and Sustainable Energy Reviews, 15, 1513–1524.

    Article  Google Scholar 

  • Patel, M. R. (2005). Wind and solar power systems: Design, analysis, and operation. Boca Raton: CRC Press.

    Book  Google Scholar 

  • Patt, A. G., Tadross, M., Nussbaumer, P., Asante, K., Metzger, M., Rafael, J., Goujon, A., & Brundrit, G. (2009). Estimating least-developed countries’ vulnerability to climate-related extreme events over the next 50 years. Proceedings of the National Academy of Sciences, 200910253.

    Google Scholar 

  • Pérez-Collazo, C., Greaves, D., & Iglesias, G. (2015). A review of combined wave and offshore wind energy. Renewable and Sustainable Energy Reviews, 42, 141–153.

    Article  Google Scholar 

  • Rahmstorf, S. (2010). A new view on sea level rise. Nature reports climate change, 4, 44–45.

    Article  Google Scholar 

  • Rahmstorf, S., Cazenave, A., Church, J. A., Hansen, J. E., Keeling, R. F., Parker, D. E., & Somerville, R. C. (2007). Recent climate observations compared to projections. Science, 316, 709–709.

    Article  Google Scholar 

  • Räisänen, J., & Palmer, T. (2001). A probability and decision-model analysis of a multimodel ensemble of climate change simulations. Journal of Climate, 14, 3212–3226.

    Article  Google Scholar 

  • Ramanathan, V., & Feng, Y. (2009). Air pollution, greenhouse gases and climate change: Global and regional perspectives. Atmospheric Environment, 43, 37–50.

    Article  Google Scholar 

  • Redlinger, R., Andersen, P., & Morthorst, P. (2016). Wind energy in the 21st century: Economics, policy, technology and the changing electricity industry. Springer Nature Switzerland AG.

    Google Scholar 

  • Rehman, S., El-Amin, I., Ahmad, F., Shaahid, S., Al-Shehri, A., & Bakhashwain, J. (2007). Wind power resource assessment for Rafha, Saudi Arabia. Renewable and Sustainable Energy Reviews, 11, 937–950.

    Article  Google Scholar 

  • Robinson, S., Willenbockel, D., & Strzepek, K. (2012). A dynamic general equilibrium analysis of adaptation to climate change in Ethiopia. Review of Development Economics, 16, 489–502.

    Article  Google Scholar 

  • Romm, J. (2006). The car and fuel of the future. Energy Policy, 34, 2609–2614.

    Article  Google Scholar 

  • Sadorsky, P. (2011). Trade and energy consumption in the Middle East. Energy Economics, 33, 739–749.

    Article  Google Scholar 

  • Salameh, M. G. (2003). Can renewable and unconventional energy sources bridge the global energy gap in the 21st century? Applied Energy, 75, 33–42.

    Article  Google Scholar 

  • Salim, R. A., Hassan, K., & Shafiei, S. (2014). Renewable and non-renewable energy consumption and economic activities: Further evidence from OECD countries. Energy Economics, 44, 350–360.

    Article  Google Scholar 

  • Schlesinger, M. E., & Mitchell, J. F. (1987). Climate model simulations of the equilibrium climatic response to increased carbon dioxide. Reviews of Geophysics, 25, 760–798.

    Article  Google Scholar 

  • Schmalensee, R., Stoker, T. M., & Judson, R. A. (1998). World carbon dioxide emissions: 1950–2050. Review of Economics and Statistics, 80, 15–27.

    Article  Google Scholar 

  • Shackley, S., & Wynne, B. (1996). Representing uncertainty in global climate change science and policy: Boundary-ordering devices and authority. Science, Technology, & Human Values, 21, 275–302.

    Article  Google Scholar 

  • Shata, A. A., & Hanitsch, R. (2006). Evaluation of wind energy potential and electricity generation on the coast of Mediterranean Sea in Egypt. Renewable Energy, 31, 1183–1202.

    Article  Google Scholar 

  • Shata, A. A., & Hanitsch, R. (2008). Electricity generation and wind potential assessment at Hurghada, Egypt. Renewable Energy, 33, 141–148.

    Article  Google Scholar 

  • Shawon, M., El Chaar, L., & Lamont, L. (2013). Overview of wind energy and its cost in the Middle East. Sustainable Energy Technologies and Assessments, 2, 1–11.

    Article  Google Scholar 

  • Shine, K. P., Fuglestvedt, J. S., Hailemariam, K., & Stuber, N. (2005). Alternatives to the global warming potential for comparing climate impacts of emissions of greenhouse gases. Climatic Change, 68, 281–302.

    Article  Google Scholar 

  • Skaggs, R., & Rice, J. (2012). Climate and energy-water-land system interactions.

    Google Scholar 

  • Skaggs, R., Hibbard, K. A., Frumhoff, P., Lowry, T., Middleton, R., Pate, R., Tidwell, V. C., Arnold, J., Averyt, K., & Janetos, A. C. (2012). Climate and Energy-Water-Land System Interactions Technical Report to the US Department of Energy in Support of the National Climate Assessment. Richland, WA: Pacific Northwest National Lab. (PNNL). No. PNNL-21185.

    Book  Google Scholar 

  • Smit, B., & Pilifosova, O. (2003). Adaptation to climate change in the context of sustainable development and equity. Sustainable Development, 8, 9.

    Google Scholar 

  • Smith, L. A. (2001). Disentangling uncertainty and error: On the predictability of nonlinear systems. In A. Mees (Ed.), Nonlinear dynamics and statistics (pp. 31–64). Berlin: Springer.

    Chapter  Google Scholar 

  • Smith, J., Deck, L., Mccarl, B., Kirshen, P., Malley, J., & Abdrabo, M. (2013). Potential impacts of climate change on the Egyptian economy, A report prepared for the United Nations development program (UNDP), Cairo, Egypt. Google Scholar.

    Google Scholar 

  • Soares, N., Costa, J. J., Gaspar, A. R., & Santos, P. (2013). Review of passive PCM latent heat thermal energy storage systems towards buildings’ energy efficiency. Energy and Buildings, 59, 82–103.

    Article  Google Scholar 

  • Soda, S. (2013). Maps of irradiation-Africa-Photovoltaic solar electricity potential. Sophia-Antipolis, France.

    Google Scholar 

  • Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K., Tignor, M., & Miller, H. (2007). IPCC, 2007: Climate change 2007: The physical science basis. Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. SD Solomon (Ed.). IPCC Working Group I (Denmark). ISBN 978-0521-88009-1.

    Google Scholar 

  • Solomon, S., Plattner, G.-K., Knutti, R., & Friedlingstein, P. (2009). Irreversible climate change due to carbon dioxide emissions. Proceedings of the National Academy of Sciences, 106, 1704–1709.

    Article  Google Scholar 

  • Sovacool, B. K. (2012). Expert views of climate change adaptation in the Maldives. Climatic Change, 114, 295–300.

    Article  Google Scholar 

  • Sovacool, B. K., D’Agostino, A. L., Meenawat, H., & Rawlani, A. (2012). Expert views of climate change adaptation in least developed Asia. Journal of Environmental Management, 97, 78–88.

    Article  Google Scholar 

  • Stainforth, D. A., Aina, T., Christensen, C., Collins, M., Faull, N., Frame, D. J., Kettleborough, J. A., Knight, S., Martin, A., & Murphy, J. (2005). Uncertainty in predictions of the climate response to rising levels of greenhouse gases. Nature, 433, 403–406.

    Article  Google Scholar 

  • Strzepek, K. M. (1996). Economic and social adaptations to climate change impacts on water resources: A case study of Egypt. International Journal of Water Resources Development, 12, 229–244.

    Article  Google Scholar 

  • Strzepek, K. M., & Yates, D. N. (2000). Responses and thresholds of the Egyptian economy to climate change impacts on the water resources of the Nile River. Climatic Change, 46, 339–356.

    Article  Google Scholar 

  • Taye, M. T., Willems, P., & Block, P. (2015). Implications of climate change on hydrological extremes in the Blue Nile basin: A review. Journal of Hydrology: Regional Studies, 4, 280–293.

    Google Scholar 

  • Team, C. W., Pachauri, R. K. & Meyer, L. (2014). IPCC, 2014: Climate change 2014: Synthesis report. Contribution of Working Groups I. II and III to the Fifth Assessment Report of the intergovernmental panel on Climate Change. IPCC, Geneva, Switzerland, 151.

    Google Scholar 

  • Thurlow, J., Dorosh, P., & Yu, W. (2012). A stochastic simulation approach to estimating the economic impacts of climate change in Bangladesh. Review of Development Economics, 16, 412–428.

    Article  Google Scholar 

  • Ucar, A., & Balo, F. (2009). Investigation of wind characteristics and assessment of wind-generation potentiality in Uludağ-Bursa, Turkey. Applied Energy, 86, 333–339.

    Article  Google Scholar 

  • Van Asselt, M. B. (2000). Perspectives on uncertainty and risk. Perspectives on Uncertainty and Risk. Springer Netherlands.

    Google Scholar 

  • Van Der Zwaan, B., Cameron, L., & Kober, T. (2013). Potential for renewable energy jobs in the Middle East. Energy Policy, 60, 296–304.

    Article  Google Scholar 

  • Wamukonya, N. (2003). Power sector reform in developing countries: Mismatched agendas. Energy Policy, 31, 1273–1289.

    Article  Google Scholar 

  • Wang, H.-F., Sung, M.-P., & Hsu, H.-W. (2016). Complementarity and substitution of renewable energy in target year energy supply-mix planning–in the case of Taiwan. Energy Policy, 90, 172–182.

    Article  Google Scholar 

  • Wu, W., Lynch, A. H., & Rivers, A. (2005). Estimating the uncertainty in a regional climate model related to initial and lateral boundary conditions. Journal of Climate, 18, 917–933.

    Article  Google Scholar 

  • Yates, D. N., & Strzepek, K. M. (1998). Modeling the Nile Basin under climatic change. Journal of Hydrologic Engineering, 3, 98–108.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Adly, A.S. (2019). Climate Change and Energy Decision Aid Systems for the Case of Egypt. In: Qudrat-Ullah, H., Kayal, A. (eds) Climate Change and Energy Dynamics in the Middle East. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-11202-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11202-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11201-1

  • Online ISBN: 978-3-030-11202-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics