An MDA Approach Based on UML and ODM Standards to Support Big Data Analytics Regarding Ontology Development

  • Naziha LaazEmail author
  • Samir Mbarki
Conference paper
Part of the Lecture Notes in Intelligent Transportation and Infrastructure book series (LNITI)


Today, the large increase in the amount of data produced by different sources and the development of technologies to store and analyze them offer many perspectives for the ontology modeling. The creation of domain ontologies will form the basis for application developers to target business professional contexts, however the future of big data will depend on the use of technologies to model ontologies. With that said, many researches recommend the combination of ontologies and big data approaches as the most efficient way to store, extract and analyze data. In this paper, we present a new methodology supporting ontology modeling for the automatic generation of domain ontologies. We propose a transformation from UML class diagrams to ODM models in agreement with the MDA approach. MDA provides opportunities to present ontology artifacts in an intuitive way by defining them in a high level of abstraction using the UML graphical syntax. With the MDA process, the ontology represented as a class diagram will automatically be generated through an ODM metamodel. In this proposal, we founded on an analytical survey. To validate our proposal, we applied it to an e-learning domain ontology.


Ontology modeling Big data E-learning Unified modeling language (UML) Ontology definition metamodel (ODM) Model-driven architecture (MDA) Ontologies 


  1. 1.
    Chen, M., Mao, S., Liu, Y.: Big data: a survey. Mob. Netw. Appl. 19(2), 171–209 (2014)CrossRefGoogle Scholar
  2. 2.
    Kozaki, K.: Ontology engineering for big data. In: Ontology and Semantic Web for Big Data (ONSD2013) Workshop in the 2013 International Computer Science and Engineering Conference (ICSEC2013), Bangkok, Thailand (2013)Google Scholar
  3. 3.
    Konys, A.: Ontology-based approaches to big data analytics. In: International Multi-Conference on Advanced Computer Systems, pp. 355–365. Springer, Cham (2016)Google Scholar
  4. 4.
    Nadal, S., Romero, O., Abelló, A., Vassiliadis, P., Vansummeren, S.: An integration-oriented ontology to govern evolution in big data ecosystems. ArXiv preprint arXiv:1801.05161 (2018)
  5. 5.
    Saber, A., Al-Zoghby, A.M., Elmougy, S.: Big-data aggregating, linking, integrating and representing using semantic web technologies. In: International Conference on Advanced Machine Learning Technologies and Applications, pp. 331–342. Springer, Cham (2018)CrossRefGoogle Scholar
  6. 6.
    Brambilla, M., Cabot, J., Wimmer, M.: Model-driven software engineering in practice. Synth. Lect. Softw. Eng. 3(1), 1–207 (2017)CrossRefGoogle Scholar
  7. 7.
    Guide, M.D.A. Version 1.0, Version 2.0, Document OMG.
  8. 8.
    Blanc, X., Salvatori, O.: MDA en action: ingénierie logicielle guidée par les modèles. Editions Eyrolles (2011)Google Scholar
  9. 9.
    Raibulet, C., Fontana, F.A., Zanoni, M.: Model-driven reverse engineering approaches: a systematic literature review. IEEE Access 5, 14516–14542 (2017)CrossRefGoogle Scholar
  10. 10.
    «About the Unified Modeling Language Specification Version 2.0», 25 Nov 2017 [En ligne]. Disponible sur: Consulté le: 25 Nov 2017
  11. 11.
    Object Management Group. Meta Object Facility (MOF) 2.0 Core Specification (2003)Google Scholar
  12. 12.
    OMG, X.: Metadata Interchange (XMI) Specification. Version, 1, 02-01 (2000)Google Scholar
  13. 13.
    «About the Unified Modeling Language Specification Version 2.5.1». Last accessed: 08 Feb 2018
  14. 14.
    Miller, J., & Mukerji, J.: MDA Guide Version 1.0. 1, Object Management Group. Inc., June 2003Google Scholar
  15. 15.
    Shaikh, A., Wiil, U.K.: Overview of slicing and feedback techniques for efficient verification of UML/OCL class diagrams. IEEE Access (2018)Google Scholar
  16. 16.
    «UML Designer Documentation». Last accessed: 08 Feb 2018
  17. 17.
    ODM, O.: Ontology definition Metamodel–OMG adopted specification. Object Management Group, En Ligne. (2007)
  18. 18.
    «—Topic Maps». Last accessed: 10 Feb 2018
  19. 19.
    Musumbu, K.: Towards a model driven semantics web using the ontology. In: The 2013 International Conference on Advanced ICT for Business and Management (ICAICTBM2013), p. 700 (2013)Google Scholar
  20. 20.
    Taneja, R., Gaur, D.: Robust fuzzy neuro system for big data analytics. In: Big Data Analytics, pp. 543–552. Springer, Singapore (2018)Google Scholar
  21. 21.
    Liu, J., Pacitti, E., Valduriez, P.: A survey of scheduling frameworks in big data systems. Int. J. Cloud Comput. 1–27 (2018)Google Scholar
  22. 22.
    Storey, V.C., Song, I.Y.: Big data technologies and management: what conceptual modeling can do. Data Knowl. Eng. 108, 50–67 (2017)CrossRefGoogle Scholar
  23. 23.
    De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rosati, R.: Using ontologies for semantic data integration. In: A comprehensive guide through the italian database research over the last 25 years, pp. 187–202. Springer, Cham (2018)Google Scholar
  24. 24.
    Roche, C.: Terminologie et ontologie. Langages 1, 48–62 (2005)CrossRefGoogle Scholar
  25. 25.
    Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Sci. Am. 284(5), 34–43 (2001)CrossRefGoogle Scholar
  26. 26.
    «RDF—Semantic Web Standards», Last accessed: 18 Feb 2018
  27. 27.
    «OWL—Semantic Web Standards», Last accessed: 18 Feb 2018
  28. 28.
    «Extensible Markup Language (XML)», Last accessed: 26 Nov 2017
  29. 29.
    Belghiat, A., Bourahla, M.: Automatic generation of OWL ontologies from UML class diagrams based on meta-modelling and graph grammars. World Acad. Sci. Eng. Technol. 6(8), 380–385 (2012)Google Scholar
  30. 30.
    Aßmann, U., Zschaler, S., Wagner, G.: Ontologies, meta-models, and the model-driven paradigm. In: Ontologies for software engineering and software technology, pp. 249–273. Springer, Berlin, Heidelberg (2006)Google Scholar
  31. 31.
    Brockmans, S., Colomb, R.M., Haase, P., Kendall, E.F., Wallace, E.K., Welty, C., Xie, G.T.: A model driven approach for building OWL DL and OWL full ontologies. In: International Semantic Web Conference, pp. 187–200. Springer, Berlin, Heidelberg (2006)Google Scholar
  32. 32.
    Saripalle, R.K., Demurjian, S.A., De la Rosa Algarín, A., Blechner, M.: A software modeling approach to ontology design via extensions to ODM and OWL. Int. J. Semant. Web Inf. Syst. (IJSWIS) 9(2), 62–97 (2013)CrossRefGoogle Scholar
  33. 33.
    Zedlitz, J., Jörke, J., Luttenberger, N.: From UML to OWL 2. In: Knowledge Technology, pp. 154–163. Springer, Berlin, Heidelberg (2012)Google Scholar
  34. 34.
    Bahaj, M., Bakkas, J.: Automatic conversion method of class diagrams to ontologies maintaining their semantic features. Int. J. Soft Comput. Eng. (IJSCE) 2 (2013)Google Scholar
  35. 35.
    Hillairet, G.: ATL use case-ODM implementation (Bridging UML and OWL). (2007)
  36. 36.
    Gašević, D., Djurić, D., Devedžić, V.: MDA-based automatic OWL ontology development. Int. J. Softw. Tools Technol. Transfer 9(2), 103 (2007)CrossRefGoogle Scholar
  37. 37.
    De Lara, J., Vangheluwe, H.: AToM 3: a tool for multi-formalism and meta-modelling. In: International Conference on Fundamental Approaches to Software Engineering, pp. 174–188. Springer, Berlin, Heidelberg (2002)CrossRefGoogle Scholar
  38. 38.
    OMG, Q.: Meta Object Facility 2.0, Query/View/Transformation Specification (2011)Google Scholar
  39. 39.
    Musset, J., Juliot, É., Lacrampe, S., Piers, W., Brun, C., Goubet, L., Lussaud, Y., Allilaire, F.: Acceleo user guide, vol. 2. See also (2006)

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.MISC Laboratory, Faculty of ScienceIbn Tofail UniversityKenitraMorocco

Personalised recommendations