Urban Traffic Flow Management Based on Air Quality Measurement by IoT Using LabVIEW

  • Mohamed El KhailiEmail author
  • Abdelkarim Alloubane
  • Loubna Terrada
  • Azeddine Khiat
Conference paper
Part of the Lecture Notes in Intelligent Transportation and Infrastructure book series (LNITI)


Our challenge has two dimensions: social and technological. We want to solve a serious problem that is assessing the air quality in cities and traffic management according to the air quality indices. To inform and sensitize people to the air pollution problem, our project will bring the locals in participatory situation and actor for the improvement of air quality by managing the urban traffic. We hear more and more talk about the Internet of Things, connected objects, or even connected world, or even intelligent home; new concepts that invade the world and enhance our way of life. Internet of Things called the third industrial revolution will profoundly change the lives of people with home automation, health and recreation, energy, distribution and our environment with intelligent cities or transport connected. The collection of information remains a major challenge without the participation of a large group of people or partners. The Crowdsourcing allows obtaining information due to a large group of people by the internet.


Smart city Crowdsourcing Internet of things Air quality Urban traffic management LabView 


  1. 1.
  2. 2.
    EVANS, Dave. Cisco. L’internet des objets. Avril, 2011
  3. 3.
    COULON, Alain. L’internet des objets un gisement à exploiter. Hiver 2010
  4. 4.
    Vineela, A., Sudha, L.: Internet of things—overview. Sudha Rani Int. J. Res. Sci. Technol. 2(4) (April 2015).
  5. 5.
  6. 6.
    Terrada, L., Bakkoury, J., El Khaili, M., Khiat, A.: Collaborative and communicative logistics flows Management using Internet of Things. In: Mizera-Pietraszko J., Pichappan P., Mohamed L. (eds.) Lecture Notes in Real-Time Intelligent Systems. RTIS 2017. Advances in Intelligent Systems and Computing, vol. 756, pp. 216–224. Springer, Cham (2019)Google Scholar
  7. 7.
    Farahzadi, A., Shams, P., Rezazadeh, J., Farahbakhsh, R.: Middleware technologies for cloud of things-a survey. Digit. Commun. Netw. (2017). ISSN 2352-8648. Scholar
  8. 8.
    McCluskey, T.L., Vallati, M.: Embedding automated planning within urban traffic management operations. In: Proceedings of the Twenty-Seventh International Conference on Automated Planning and Scheduling (ICAPS 2017), Pittsburgh, USA, 18–23 June 2017Google Scholar
  9. 9.
    Gulić, M., Olivares, R., Borrajo, D.: Using automated planning for traffic signals control. PROMET Traffic Transp. 28(4), 383–391 (2016)CrossRefGoogle Scholar
  10. 10.
    Krajzewicz, D., Erdmann, J., Behrisch, M., Bieker, L.: Recent development and applications of SUMO—Simulation of urban MObility. Int. J. Adv. Syst. Measur. 5(3 & 4), 128–138 (2012)Google Scholar
  11. 11.
    Vallati, M., Magazzeni, D., De Schutter, B., Chrpa, L., McCluskey, T.L.: Efficient macroscopic urban traffic models for reducing congestion: a PDDL+ planning approach. In: The Thirtieth AAAI Conference on Artificial Intelligence (AAAI), pp. 3188–3194 (2016)Google Scholar
  12. 12.
    National Instrument, WirelessData Acquisition in LabVIEW tutorial (
  13. 13.
    Huang, J., Pan, X., Guo, X., Li, G.: Impacts of air pollution wave on years of life lost: a crucial way to communicate the health risks of air pollution to the public. Environ. Int. 113, 42–49 (2018)CrossRefGoogle Scholar
  14. 14.
    Khiat, A., Bahnasse, A., El Khaili, M., Bakkoury, J.: Study and evaluation of vertical and horizontal handover’s scalability using OPNET modeler. Int. J. Comput. Sci. Inform. Secur. (USA) 14(11) November 2016Google Scholar
  15. 15.
    Khiat, A., Bahnasse, A., El Khaili, M., Bakkoury, J.: Study, evaluation and measurement of IEEE 802.16e secured by dynamic and multipoint VPN IPsec. Int. J. Comput. Sci. Inform. Secur. (USA) 15(1) (January 2017)Google Scholar
  16. 16.
    Khiat, A., Bahnasse, A., El Khaili, M., Bakkoury, J.: Study, evaluation and measurement of 802.11e and 802.16e quality of service mechanisms in the context of a vertical handover case of real time applications. Int. J. Comput. Sci. Netw. Secur. (KOREA) 17(2) (February 2017)Google Scholar
  17. 17.
    Jin, M., Gu, X., He, Y., et al.: Wireless sensor networks. In: Conformal Geometry, pp. 253–296. Springer, Cham (2018)CrossRefGoogle Scholar
  18. 18.
    Chandana, L.S., Sekhar, A.R.: Weather monitoring using wireless sensor networks based on IOT (2018)Google Scholar
  19. 19.
    Kuo, Y.W., Li, C.L., Jhang, J.H., Lin, S.: Design of a wireless sensor network-based IoT platform for wide area and heterogeneous applications. IEEE Sens. J. 18(12), 5187–5197 (2018)CrossRefGoogle Scholar
  20. 20.
    International Telecommunication.: Sudha. The Internet of Things. ITU (2005)
  21. 21.
    BUSINESS.: Objets Connectés Et Machines Communicantes (M2M). 27 November 2015
  22. 22.
    Nemri, M.: France Stratégie, Janvier 2015 N°22 Source: Source: IDATE (2013).
  23. 23.
    Caelen, J.: ObjetsConnectes. 2011. Last visited 29 July 2018
  24. 24.
    Schmidt, J.F., Neuhold, D., Klaue, J., Schupke, D., Bettstetter, C.: Experimental study of UWB connectivity in industrial environments. In: European Wireless 2018; 24th European Wireless Conference, pp. 1–4. VDE (2018 May)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mohamed El Khaili
    • 1
    Email author
  • Abdelkarim Alloubane
    • 1
  • Loubna Terrada
    • 1
  • Azeddine Khiat
    • 1
  1. 1.SSDIA Laboratory, ENSET MohammediaHassan II University of CasablancaCasablancaMorocco

Personalised recommendations