• Juan C. BragaEmail author
  • Pedro P. Cunha
Part of the Regional Geology Reviews book series (RGR)


Cenozoic deposits crop out over large areas of the Iberian Peninsula, being the most extensively represented rocks at the surface. The tectono-stratigraphic evolution of the Iberian Cenozoic basins is ultimately linked to the relative movements of Europe, Iberia and Africa. Throughout the Cenozoic, deformation in Iberia migrated from north to south and later toward west (the Atlantic margin of Iberia is still tectonically active). The sedimentary record of the Cenozoic basins reflects their tectonic evolution and substantial aspects of the geological history of the mountains surrounding them. As such, they are invaluable archives of the tectonic and geodynamic context in which they developed and the analysis of their infill is a key tool to understand the (paleo) geographical changes that led to the configuration of the modern landscape.


  1. Alonso JL, Pulgar JA, García-Ramos JC, Barba P (1996) Tertiary basins and Alpine tectonics in the Cantabrian Mountain (NW Spain). In Friend PF, Dabrio CJ (eds.) Tertiary Basins of Spain: The Stratigraphic Record of Crustal Kinematics. World Reg. Geol. Ser. 6, Cambridge Univ. Press, Cambridge, U.K., pp. 214–227Google Scholar
  2. Antunes MT, Legoinha P, Cunha PP, Pais J (2000) High resolution stratigraphy and Miocene facies correlation in Lisbon and Setúbal Peninsula (Lower Tejo basin, Portugal). Ciências da Terra 14:183–190Google Scholar
  3. Arenillas I, Molina E, Ortiz S et al (2008) Foraminiferal and δ13C isotopic event‐stratigraphy across the Danian‐Selandian transition at Zumaya (northern Spain): Chronostratigraphic implications. Terra Nova 20(1):38–44CrossRefGoogle Scholar
  4. Braga JC, Martín JM, Quesada C (2003) Patterns and average rates of late Neogene‐Recent uplift of the Betic Cordillera, SE Spain. Geomorphology 50:3–26CrossRefGoogle Scholar
  5. Cabral J (1995) Neotectónica em Portugal Continental. Mem. Instituto Geológico e Mineiro 31, LisboaGoogle Scholar
  6. Cloetingh S, Burov E, Beekman F, Andeweg B, Andriessen P, Garcia-Castellanos D, De Vicente G, Vegas R (2002) Lithospheric folding in Iberia. Tectonics 21(5):1041–1067CrossRefGoogle Scholar
  7. Comas, MC, Platt, JP, Soto, JI, Watts, AB (1999) The origin and tectonic history of the Alborán Basin: insights from Leg 161 results. In Zahn, R, Comas, M.C, and Klaus, A. (Eds.), Proceeding Ocean Drilling Program, Scientific Results, 161:555–580Google Scholar
  8. Crespo-Blanc, A., Comas, M., & Balanya, J.C. (2016). Clues for a Tortonian reconstruction of the Gibraltar Arc: Structural pattern, deformation diachronism and block rotations. Tectonophysics 683:308–324Google Scholar
  9. Calvo J, Daams R, Morales J, Lopez-Martínez N, Agusti J, Anadon P, Armenteros I, Cabrera L,Civis J, Corrochano A, Diaz-Molina M, Elizaga E, Hoyos M, Martin-Suarez E, Martínez J, Moissenet E, Muñoz A, Pérez-Garcia A, Pérez-Gonzalez A, Portero J, Robles F, Santisteban C, Torres T, Van der Meulen AJ, Vera J, Mein P (1993) Up-to-date Spanish continental Neogene synthesis and paleoclimatic interpretation. Rev Soc Geol Espana 6 (3–4):29–40Google Scholar
  10. Cunha PP (1992a) Estratigrafia e sedimentologia dos depósitos do Cretácico Superior e Terciário de Portugal Central, a leste de Coimbra. Ph.D. thesis, Univ. Coimbra, p 262Google Scholar
  11. Cunha, PP (1992b) Establishment of unconformity-bounded sequences in the Cenozoic record of the western Iberian margin and synthesis of the tectonic and sedimentary evolution in central Portugal during Neogene. First Congress R.C.A.N.S. - “Atlantic general events during Neogene” (Abstracts book), Lisboa, pp. 33–35Google Scholar
  12. Cunha PP (2000) Paleoalterações e cimentações nos depósitos continentais terciários de Portugal central: importância na interpretação de processos antigos. Ciências da Terra 14:145–154Google Scholar
  13. Cunha PP, Martins A (2004) Principais aspectos geomorfológicos de Portugal central, sua relação com o registo sedimentar e a importância do controlo tectónico. In: Araújo MA, Gomes A. (eds) Geomorfologia do NW da Península Ibérica, Fac Letras Univ Porto, 155–182Google Scholar
  14. Cunha PP, Reis RP (1995) Cretaceous sedimentary and tectonic evolution of the northern sector of the Lusitanian Basin. Cretaceous Res. 16:155–170Google Scholar
  15. De Vicente G, Cloetingh S, Van Wees JD, Cunha PP (2011) Tectonic classification of Cenozoic Iberian foreland basins. Tectonophysics 502(1–2):38–61CrossRefGoogle Scholar
  16. Dinarès-Turell J, Baceta JI, Pujalte V et al (2003) Untangling the Palaeocene climatic rhythm: an astronomically calibrated Early Paleocene magnetostratigraphy and biostratigraphy at Zumaia (Basque basin, northern Spain). Earth and Planetary Science Letters 216:483–500CrossRefGoogle Scholar
  17. Dinarès-Turell J, Baceta JI, Bernaola G et al (2007) Closing the Mid-Palaeocene gap: Toward a complete astronomically tuned Palaeocene Epoch and Selandian and Thanetian GSSPs at Zumaia (Basque Basin, W. Pyrenees). Earth and Planetary Science Letters 262:450–467CrossRefGoogle Scholar
  18. Dinarès-Turell J, Pujalte V, Stoykova K et al (2012) The Palaeocene “top chron C27n” transient greenhouse episode: evidence from marine pelagic Atlantic and peri-Tethyan sections. Terra Nova 24:477–486. Scholar
  19. Galindo-Zaldívar J, Gil AJ, Borque MJ, González-Lodeiro F, Jabaloy A, Marín-Lechado C, Ruano P, Sanz de Galdeano C (2003) Active faulting in the internal zones of the central Betic Cordilleras (SE, Spain). Journal of Geodynamics 36:239–250. doi: Scholar
  20. Gallastegui J (2000) Estructura cortical de la Cordillera y margen Cantábricos: Perfiles ESCI-N. Trab. Geol. J 22, 221 ppGoogle Scholar
  21. Garcia-Castellanos D, Fernàndez M., Torné M (2002) Modelling the evolution of the Guadalquivir foreland basin (southern Spain). Tectonics, 21, 1–17CrossRefGoogle Scholar
  22. Hsü, K.J., Ryan, W.B.F., Cita, M.B., 1973. Late Miocene desiccation of the Mediterranean. Nature 242, 240–244CrossRefGoogle Scholar
  23. Intxauspe-Zubiaurre B, Payros A, Flores J-A et al (2017) Changes to sea-surface characteristics during the middle Eocene (47.4 Ma) C21r-H6 event: evidence from calcareous nannofossil assemblages of the Gorrondatxe section (western Pyrenees). Newsletters on Stratigraphy 50(3):245–267CrossRefGoogle Scholar
  24. Iribarren L, Vergés J, Fernàndez M. (2009) Sediment supply from the Betic–Rif orogen to basins through Neogene. Tectonophysics 475:68–84CrossRefGoogle Scholar
  25. Krijgsman W, Hilgen FJ, Raffi I, Sierro FJ, Wilson DS (1999) Chronology, causes and progression of the Messinian salinity crisis. Nature 400:652–655CrossRefGoogle Scholar
  26. Legoinha P (2001) Biostratigrafia de foraminíferos do Miocénico de Portugal. Ph.D. Thesis, Univ. Nova Lisboa, p 238Google Scholar
  27. Legoinha P, Flores, A-J (2014) Refinement of the Biostratigraphy and Biochronology of the Belverde borehole (Setúbal Peninsula, Portugal) using calcareous nannofossil data. In R. Rocha et al. (eds), STRATI 2013, Springer Geology:1119–1122Google Scholar
  28. Martín JM, Puga‐Bernabéu Á, Aguirre J, Braga JC (2014) Miocene Atlantic‐Mediterranean seaways in the Betic Cordillera (southern Spain). Rev Soc Geol Esp 27:175–186Google Scholar
  29. Martín-González F, Heredia N (2011) Complex tectonic and tectonostratigraphic evolution of an Alpine foreland basin: the western Duero Basin and the related Tertiary depressions of the NW Iberian Peninsula. Tectonophysics 502, 75–89. Scholar
  30. Martín-Velázquez S, De Vicente G (2012) The role of lithospheric heterogeneities in the location of the Cenozoic intraplate deformation of Iberia from finite element modelling. Tectonics 31, TC1009, Scholar
  31. Martínez-García P, Comas M, Soto JI, Lonergan L, Watts AB (2013) Strike-slip tectonics and basin inversion in the Western Mediterranean: the Post-Messinian evolution of the Alborán Sea. Basin Res 25:1–27, Scholar
  32. Molina E, Alegret L, Apellaniz E. et al (2011) The Global Stratotype Section and Point (GSSP) for the base of the Lutetian Stage at the Gorrondatxe section, Spain, Episodes 34:86–108Google Scholar
  33. Mougenot D (1981) Une phase de compression au Crétacé terminal à l’Ouest du Portugal: quelques arguments. Bol. Soc. Geol. Portugal 22:233–239Google Scholar
  34. Mougenot D (1989) Geologia da Margem Portuguesa. Instituto Hidrográfico, Lisboa, p 259Google Scholar
  35. Orue-Etxebarria X, Pujalte V, Bernaola G et al (2001) Did the Late Paleocene thermal maximum affect the evolution of larger foraminifers? Evidence from calcareous plankton of the Campo Section (Pyrenees, Spain). Mar Micropaleontol 41:45–71CrossRefGoogle Scholar
  36. Pais J (2004) The Neogene of the Lower Tejo Basin (Portugal). Rev Esp Paleontologia 19 (2):229–242Google Scholar
  37. Pais J, Cunha PP, Pereira D, Legoinha P, Dias R, Moura D, Brum da Silveira A, Kullberg JC, González-Delgado JA (2012) The Paleogene and Neogene of Western Iberia (Portugal). A Cenozoic record in the European Atlantic domain. SpringerBriefs in Earth Sciences, Springer, p 158. Scholar
  38. Payros A, Ortiz S, Milán I et al (2015) Early Eocene climatic optimum: Environmental impact on the North Iberian continental margin. GSA Bulletin 127(11/12):1632–1644CrossRefGoogle Scholar
  39. Puigdefàbregas C, Souquet P (1986) Tectosedimentary cycles and depositional sequences of the Mesozoic and Tertiary from the Pyrenees. Tectonophysics 129:173–203CrossRefGoogle Scholar
  40. Pujalte V, Schmitz B, Baceta JI, Orue-Etxebarria X, Bernaola G, Dinarès-Turell J, Payros A, Apellaniz E, Caballero F (2009) Correlation of the Thanetian-Ilerdian turnover of larger foraminifera and the Paleocene-Eocene thermal maximum: confirming evidence from the Campo area (Pyrenees, Spain). Geologica Acta, 7(1–2):161–175Google Scholar
  41. Riding R, Braga JC, Martín JM, Sánchez-Almazo I (1998) Mediterranean Messinian Salinity Crisis: constraints from a coeval marginal basin, Sorbas, southeastern Spain. Mar Geol 146:1–20CrossRefGoogle Scholar
  42. Sanz de Galdeano C, Alfaro P (2004) Tectonic significance of the present relief of the Betic Cordillera. Geomorphology 63:178–190Google Scholar
  43. Schmitz B, Asaro F, Molina E et al (1997) High resolution iridium, δ13C, δ180, foraminifera and nannofossil profiles across the latest Paleocene benthic extinction event at Zumaya, Spain. Palaeogeogr. Palaeoclimatol. Palaeoecol. 133: 49–68CrossRefGoogle Scholar
  44. Schmitz B, Pujalte V, Molina E, Monechi S, Orue‐Etxebarria X, et al. (2011) The Global Stratotype Sections and Points for the bases of the Selandian (Middle Paleocene) and Thanetian (Upper Paleocene) Stages at Zumaia, Spain. Episodes 34/4:220–243Google Scholar
  45. Serra-Kiel J, Hottinger L, Caus E et al (1998) Larger foraminiferal biostratigraphy of the Tethyan Paleocene and Eocene. Bulletin de la Societé géologique de France 169: 281–299Google Scholar
  46. Sierro FJ, Flores JA, Civis J, González-Delgado JA, Francés G. (1993) Late Miocene globorotaliid event-stratigraphy and biogeography in the NE-Atlantic and Mediterranean. Marine Micropaleontology 21:143–167CrossRefGoogle Scholar
  47. Sierro FJ, Hilgen FJ, Krijgsman W, Flores JA (2001) The Abad composite (SE Spain): a Messinian reference section for the Mediterranean and the APTS. Palaeogeogr. Palaeoclimatol. Palaeoecol. 168:141–169CrossRefGoogle Scholar
  48. Srivastava SP, Roest WRL, Kovacs C., Oakey G, Levesque S, Verhoef J, Macnab R (1990) Motion of Iberia since the Late Jurassic: Results from detailed aeromagnetic measurements in the Newfoundland Basin. Tectonophysics 184:229–260CrossRefGoogle Scholar
  49. Vergés J, Fernàndez M (2012) Tethys-Atlantic interaction along the Iberia-Africa plate boundary: The Betic-Rif orogenic system. Tectonophysics 579: 144–17CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Departamento de Estratigrafía y PaleontologíaUniversidad de Granada. Campus FuentenuevaGranadaSpain
  2. 2.Department of Earth SciencesMARE—Marine and Environmental Sciences Centre, University of CoimbraCoimbraPortugal

Personalised recommendations