Skip to main content

A Procedure for Validating Impedance Parameters of HF/UHF RFID Transponder Antennas

  • Conference paper
  • First Online:
Book cover Methods and Techniques of Signal Processing in Physical Measurements (MSM 2018)

Abstract

The performance of automatic identification in every RFID system is strongly dependent on proper operation of the transponders that are used to mark different kind of objects. The impedance matching between chip and connected antenna is the most significant component determining the design quality of transponder internal circuitry, and hence influencing overall system parameters such as shape and dimensions of interrogation zone, level of identification efficiency, etc. Taking into consideration the various types of RFID systems, the problem has to be considered differently with respect to the operating frequency. Moreover it has to be treated in a different way than it is known from the classical theory of typical radio communication systems. The authors have proposed and developed their own method for validating impedance parameters of RFID transponder antennas operating in the regular HF and UHF bands. It is based on a generalized model of the RFID transponders dedicated to different standards. The developed test procedure consists of four steps involving antenna designing, manufacturing, measuring and validating processes. The practical usefulness of the proposed method is confirmed by experiments conducted with using representative examples designed in research and development projects realized with partners from the industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Plunkett, J.W.: Plunkett’s Telecommunications Industry Almanac 2018, 2018th edn. Plunkett Research, Houston, USA (2017)

    Google Scholar 

  2. Ustundag, A., Cevikcan, E.: Industry 4.0: managing the digital transformation, 1st edn. Cham, Switzerland (2018)

    Book  Google Scholar 

  3. Greengard, S.: The Internet of Things. The MIT Press, London, GB (2015)

    Google Scholar 

  4. IDTechEx: continued growth as market for RFID exceeds $10bn milestone. ID World Magazine, 38–39, Dec 2015

    Google Scholar 

  5. Das, R., Harrop, P.: RFID forecasts, players and opportunities 2014–2024. Report, IDTechEx (2014)

    Google Scholar 

  6. Ustundag, A.: The Value of RFID. Benefits vs. Costs. Springer-Verlag, London (2013). https://doi.org/10.1007/978-1-4471-4345-1

    Google Scholar 

  7. Finkenzeller, K.: RFID Handbook – Fundamentals and Applications in Contactless Smart Cards, Radio Frequency Identification and Near-Field Communication, 3rd edn. Wiley (2010)

    Google Scholar 

  8. CEPT ERC: ERC recommendation 70-03, Relating to the use of Short Range Devices (SRD). Electronic Communications Committee (2017)

    Google Scholar 

  9. Fernández-Salmerón, J., Rivadeneyra, A., Rodríguez, M.A.C., Capitan-Vallvey, L.F., Palma, A.J.: HF RFID tag as humidity sensor: two different approaches. IEEE Sens. J. 15(10), 5726–5733 (2015). https://doi.org/10.1109/JSEN.2015.2447031

    Article  Google Scholar 

  10. Jankowski-Mihułowicz, P., Kalita, W., Skoczylas, M., Węglarski, M.: Modelling and design of HF RFID passive transponders with additional energy harvester. Int. J. Antennas Propag., 1–10 (2013). Article ID 242840. https://doi.org/10.1155/2013/242840

    Article  Google Scholar 

  11. Saghlatoon, H., Mirzavand, R., Honari, M.M., Mousavi, P.: Investigation on passive booster for improving magnetic coupling of metal mounted proximity range HF RFIDs. IEEE Trans. Microw. Theory Tech. 65(9), 3401–3408 (2017). https://doi.org/10.1109/TMTT.2017.2676095

    Article  Google Scholar 

  12. Zamora, G., Zuffanelli, S., Aguila, P., Paredes, F., Martin, F., Bonache, J.: Broadband UHF-RFID passive tag based on split-ring resonator (SRR) and T-match network. IEEE Antennas Wirel. Propag. Lett. Accepted for publication (2018). https://doi.org/10.1109/lawp.2018.2800166

    Article  Google Scholar 

  13. Jankowski-Mihułowicz, P., Kawalec, D., Węglarski, M.: Antenna design for semi-passive UHF RFID transponder with energy harvester. Radioengineering 24(3), 722–728 (2015). https://doi.org/10.13164/re.2015.0722

    Article  Google Scholar 

  14. Zamora, G., Zuffanelli, S., Paredes, F., Martı, F., Bonache, J.: Design and synthesis methodology for UHF-RFID tags based on the T-match network. IEEE Trans. Microw. Theory Tech. 61(12), 4090–4098 (2013). https://doi.org/10.1109/tmtt.2013.2287856

    Article  Google Scholar 

  15. Lu, Y., Basset, P., Laheurte, J.M.: Performance evaluation of a long-range RFID tag powered by a vibration energy harvester. IEEE Antennas Wirel. Propag. Lett. 16, 1832–1835 (2017). https://doi.org/10.1109/LAWP.2017.2682419

    Article  Google Scholar 

  16. Ramirez, R.A., Rojas-Nastrucci, E.A., Weller, T.M.: UHF RFID tags for On-/Off-metal applications fabricated using additive manufacturing. IEEE Antennas Wirel. Propag. Lett. 16, 1635–1638 (2017). https://doi.org/10.1109/LAWP.2017.2658599

    Article  Google Scholar 

  17. Zhang, Y.J., Wang, D., Tong, M.S.: An adjustable quarter-wavelength meandered dipole antenna with slotted ground for metallically and airily mounted RFID tag. IEEE Trans. Antennas Propag. 65(6), 2890–2898 (2017). https://doi.org/10.1109/TAP.2017.2690535

    Article  MathSciNet  MATH  Google Scholar 

  18. Sohrab, A.P., Huang, Y., Hussein, M.N., Carter, P.: A hybrid UHF RFID tag robust to host material. IEEE J. Radio Freq. Identif. 1(2), 163–169 (2017). https://doi.org/10.1109/JRFID.2017.2765623

    Article  Google Scholar 

  19. Alibakhshi-Kenari, M., Naser-Moghadasi, M., Sadeghzadeh, R.A., Virdee, B.S., Limiti, E.: Dual-band RFID tag antenna based on the Hilbert-curve fractal for HF and UHF applications. IET Circuits Devices Syst. 10(2), 140–146 (2016). https://doi.org/10.1049/iet-cds.2015.0221

    Article  Google Scholar 

  20. Jankowski-Mihułowicz, P., Węglarski, M: Definition, characteristics and determining parameters of antennas in terms of synthesizing the interrogation zone in RFID systems. In: Crepaldi, P.C., Pimenta T.C. (eds.) Radio Frequency Identification, Chapter 5, pp. 65–119. INTECH, Rijeka, Croatia (2017). https://doi.org/10.5772/intechopen.71378

    Google Scholar 

  21. Taoufik, S., Dherbécourt, P., El Oualkadi, A., Temcamani, F.: Reliability and failure analysis of UHF RFID passive tags under thermal storage. IEEE Trans. Device Mater. Reliab. 17(3), 531–538 (2017). https://doi.org/10.1109/TDMR.2017.2733519

    Article  Google Scholar 

  22. Bauernfeind, T., Renhart, W., Alotto, P., Bíró, O.: UHF RFID antenna impedance characterization: numerical simulation of interconnection effects on the antenna impedance. IEEE Trans. Magn. 53(6), 1–4 (2017). https://doi.org/10.1109/TMAG.2017.2655883

    Article  Google Scholar 

  23. Jankowski-Mihułowicz, P., Pitera, G., Węglarski, M.: The impedance measurement problem in antennas for RFID technique. Metrol. Meas. Syst. 21(3), 509–520 (2014). https://doi.org/10.2478/mms-2014-0043

    Article  Google Scholar 

  24. Jankowski-Mihułowicz, P.: Field conditions of interrogation zone in anticollision radio frequency identification systems with inductive coupling. In: Turcu, C. (eds.) Radio Frequency Identification Fundamentals and Applications Bringing Research to Practice, Chapter 1, pp. 1–26. INTECH, Rijeka, Croatia (2010)

    Google Scholar 

  25. Rizkalla, S., Prestros, R., Mecklenbräuker, C.F.: De-embedding transformer-based method for characterizing the chip of HF RFID cards. In: IEEE Wireless Power Transfer Conference (WPTC), pp. 1–4, Taipei (2017). https://doi.org/10.1109/wpt.2017.7953814

  26. Jankowski-Mihułowicz, P., Węglarski, M.: Determination of passive and semi-passive chip parameters required for synthesis of interrogation zone in UHF RFID systems. Elektronika ir Elektrotechnika 20(9), 65–73 (2014). https://doi.org/10.5755/j01.eee.20.9.5007

    Article  Google Scholar 

  27. Meys, R., Janssens, F.: Measuring the impedance of balanced antennas by an S-parameter method. IEEE Antennas Propag. Mag. 40(6), 62–65 (1998). https://doi.org/10.1109/74.739191

    Article  Google Scholar 

  28. Peruzzi, M., Masson, F., Mandolesi, P., Perotoni, M.: Technique for measurement of UHF RFID balanced antennas. Electron. Lett. 54(2), 59–60 (2018). https://doi.org/10.1049/el.2017.3989

    Article  Google Scholar 

  29. Qing, X., Goh, C.K., Chen, Z.N.: Impedance characterization of RFID tag antennas and application in tag co-design. IEEE Trans. Microw. Theory Tech. 57(5), 1268–1274 (2009). https://doi.org/10.1109/TMTT.2009.2017288

    Article  Google Scholar 

  30. Cai, C., Hong, W., Deng, L., Li, S.: Impedance measurement of RFID tag antenna based on different methods. In: IEEE 5th International Symposium on Electromagnetic Compatibility, pp. 1–4, Beijing (2017). https://doi.org/10.1109/emc-b.2017.8260455

  31. Agilent Technologies: Advanced Calibration Techniques for Vector Network Analyzers. Modern Measurement Techniques for Testing Advanced Military Communications and Radars. 2nd edn. Agilent Technologies (2006)

    Google Scholar 

  32. Keysight Technologies: De-Embedding and Embedding S-Parameter Networks Using a Vector Network Analyzer. Application Note, 5980-2784EN, Keysight Technologies, USA (2017)

    Google Scholar 

  33. Wang, Q., Gao, Y., Fan, J., Drewniak, J., Zai, R.: Differential probe characterization. In: IEEE International Symposium on Electromagnetic Compatibility (EMC), pp. 780–785, Ottawa (2016). https://doi.org/10.1109/isemc.2016.7571748

  34. Cascade Microtech: Probe Selection Guide – Impedance Standard Substrate (ISS). ProbeGuide-1017, Cascade Microtech (2017)

    Google Scholar 

  35. PacketMicro: TCS50 Calibration Substrate, S-Parameter Calibration and TDR Impedance Validation, Santa Clara, USA (2017)

    Google Scholar 

  36. Micromanipulator: Probe Tips and Probe Holders. Reference Manual, Carson City, Nevada, USA (2013)

    Google Scholar 

  37. NXP: NT2L1001_NT2H1001, NTAG 210μ, NFC Forum Type 2 Tag compliant IC with 48 bytes user memory. Product data sheet, Rev. 3.0, 343930 (2016)

    Google Scholar 

  38. AMS: SL900A EPC Class 3 Sensory Tag Chip – For Automatic Data Logging. Datasheet, v1-07 (2016)

    Google Scholar 

  39. Jankowski-Mihułowicz, P., Lichoń, W., Pitera, G., Węglarski, M.: Determination of the material relative permittivity in the UHF band by using T and modified ring resonators. Int. J. Electron. Telecommun. 62(2), 129–134 (2016). https://doi.org/10.1515/eletel-2016-0017

    Article  Google Scholar 

Download references

Acknowledgments

Results of Grants No. PBS1/A3/3/2012 from Polish National Centre for Research and Development as well as Statutory Activity of Rzeszow University of Technology were applied in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Jankowski-Mihułowicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jankowski-Mihułowicz, P., Węglarski, M., Lichoń, W. (2019). A Procedure for Validating Impedance Parameters of HF/UHF RFID Transponder Antennas. In: Hanus, R., Mazur, D., Kreischer, C. (eds) Methods and Techniques of Signal Processing in Physical Measurements. MSM 2018. Lecture Notes in Electrical Engineering, vol 548. Springer, Cham. https://doi.org/10.1007/978-3-030-11187-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11187-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11186-1

  • Online ISBN: 978-3-030-11187-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics