Skip to main content

Autoclave Sterilization Powered Medical IoT Sensor Systems

  • Conference paper
  • First Online:
Methods and Techniques of Signal Processing in Physical Measurements (MSM 2018)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 548))

Included in the following conference series:

  • 827 Accesses

Abstract

The purpose of this study is to explore the possibilities of harvesting the thermal energy from steam sterilization process to power the IoT sensor node. Thermoelectrical generators based heat recovering have been used for powering IoT sensor nodes. The design process of the TEG based energy harvesting application is described in details. All vital parts of the system like choosing the suitable TEG module, heat storage material, power storage device, a power management system as well as insulation material to create the temperature gradient across the TEG were precisely described. The temperature-voltage characteristics of the module are analyzed within the test setup of standard steam sterilization. Power consumption of a CC2650 Bluetooth module is analyzed and optimized to maximize the power efficiency and the lifetime. During this study self powered Bluetooth IoT sensor node was developed. Power consumption software optimization have been applied resulting in the lifetime of over 10 days after single sterilization cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. David, A.: The Digital Future of Healthcare (2017)

    Google Scholar 

  2. Kanan, R., Elhassan, O.: Batteryless radio system for hospital application. In: Proceedings of 2016 SAI Computing Conference, SAI 2016, pp. 939–945 (2016). https://doi.org/10.1109/SAI.2016.7556093

  3. Huang, A., et al.: The SmartOR: a distributed sensor network to improve operating room efficiency. Surgical Endoscopy Other Interv. Techn. (2017). https://doi.org/10.1007/s00464-016-5390-z

    Article  Google Scholar 

  4. Mahfouz, M., To, G., Kuhn, M.: Smart instruments: wireless technology invades the operating room. In: RWW 2012—Proceedings: 2012 IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems, BioWireleSS 2012 (2012). https://doi.org/10.1109/BioWireless.2012.6172743

  5. Zhang, H., Li, J., Wen, B., Xun, Y., Liu, J.: Connecting Intelligent Things in Smart Hospitals using NB-IoT. IEEE Int. Things J. 4662(c), 1–11 (2018). https://doi.org/10.1109/JIOT.2018.2792423

    Article  Google Scholar 

  6. Lin, X., Salari, M., Arava, L.M.R., Ajayan, P.M., Grinstaff, M.W.: High temperature electrical energy storage: advances, challenges, and frontiers. Chem. Soc. Rev. 45(21), 5848–5887 (2016). https://doi.org/10.1039/C6CS00012F. http://xlink.rsc.org/?DOI=C6CS00012F

    Article  Google Scholar 

  7. Bandhauer, T.M., Garimella, S., Fuller, T.F.: A critical review of thermal issues in lithium-ion batteries. J. Electrochem. Soc. 158(3), R1 (2011). https://doi.org/10.1149/1.3515880

    Article  Google Scholar 

  8. Spotnitz, R., Franklin, J.: Abuse behavior of high-power, lithium-ion cells. J. Power Sour. 113(1), 81–100 (2003). https://doi.org/10.1016/S0378-7753(02)00488-3

    Article  Google Scholar 

  9. Hammami, A., Raymond, N., Armand, M.: Runaway risk of forming toxic compounds. Nature 424, 635 (2003). https://doi.org/10.1038/424635b

    Article  Google Scholar 

  10. Cooley, J., Signorelli, R., Green, M., Sasthan, P., Deane, C., Wilhelmus, L.A.: Power system for high temperature applications with rechargeable energy storage (2012)

    Google Scholar 

  11. Smith, P.H., Tran, T.N., Jiang, T.L., Chung, J.: Lithium-ion capacitors: electrochemical performance and thermal behavior. J. Power Sour. 243, 982–992 (2013). https://doi.org/10.1016/j.jpowsour.2013.06.012

    Article  Google Scholar 

  12. Chen, W.H., Wu, P.H., Wang, X.D., Lin, Y.L.: Power output and efficiency of a thermoelectric generator under temperature control. Energy Convers. Manag. 127, 404–415 (2016). https://doi.org/10.1016/j.enconman.2016.09.039

    Article  Google Scholar 

  13. Champier, D.: Thermoelectric generators: a review of applications (2017). https://doi.org/10.1016/j.enconman.2017.02.070

    Article  Google Scholar 

  14. Chen, W.H., Huang, S.R., Wang, X.D., Wu, P.H., Lin, Y.L.: Performance of a thermoelectric generator intensified by temperature oscillation. Energy 133, 257–269 (2017). https://doi.org/10.1016/j.energy.2017.05.091. http://linkinghub.elsevier.com/retrieve/pii/S0360544217308460

    Article  Google Scholar 

  15. Kanan, R., Bensalem, R.: Energy harvesting for wearable wireless health care systems. In: 2016 IEEE Wireless Communications and Networking Conference, vol. 2016-Septe, pp. 1–6 (2016). https://doi.org/10.1109/WCNC.2016.7565034. http://ieeexplore.ieee.org/document/7565034/

  16. Lundager, K., Zeinali, B., Tohidi, M., Madsen, J., Moradi, F.: Low power design for future wearable and implantable devices. J. Low Power Electron. Appl. 6(4) (2016). https://doi.org/10.3390/jlpea6040020

    Article  Google Scholar 

  17. Buist, R.J., Lau, P.G.: Thermoelectric power generator design and selection from TE cooling module specifications. In: XVI International Conference on Thermoelectrics, 1997 Proceedings ICT 1997. (616), pp. 551–554 (1997). https://doi.org/10.1109/ICT.1997.667589

  18. Lineykin, S., Ruchaevsky, I., Kuperman, A.: Analysis and optimization of TEG-heatsink waste energy harvesting system for low temperature gradients. In: 2014 16th European Conference on Power Electronics and Applications, EPE-ECCE Europe 2014 pp. 1–10 (2014). https://doi.org/10.1109/EPE.2014.6910778. http://www.scopus.com/inward/record.url?eid=2-s2.0-84923902652&partnerID=40&md5=6115ae5a48219981242ca2d3f23a1686

  19. Alva, G., Liu, L., Huang, X., Fang, G.: Thermal energy storage materials and systems for solar energy applications. Renewable and Sustainable. Energy Rev. 68, 693–706 (2017). https://doi.org/10.1016/j.rser.2016.10.021

    Article  Google Scholar 

  20. Laird, I., Lu, D.C.: High step-up DC/DC topology and MPPT algorithm for use with a thermoelectric generator. IEEE Trans. Power Electron. 28, 7 (2013). https://doi.org/10.1109/TPEL.2012.2219393

    Article  Google Scholar 

  21. Thielen, M., Sigrist, L., Magno, M., Hierold, C., Benini, L.: Human body heat for powering wearable devices: from thermal energy to application. Energy Convers. Manag. 131 (2017). https://doi.org/10.1016/j.enconman.2016.11.005

    Article  Google Scholar 

  22. Hui, J.W., Culler, D.E.: IPv6 in low-power wireless networks. Proc. IEEE 98(11), 1865–1878 (2010). https://doi.org/10.1109/JPROC.2010.2065791

    Article  Google Scholar 

  23. Muhammad, A.P., Akram, M.U., Khan, M.A.: Survey based analysis of internet of things based architectural framework for hospital management system. In: 2015 13th International Conference on Frontiers of Information Technology (FIT), pp. 271–276 (2015). https://doi.org/10.1109/FIT.2015.54. http://ieeexplore.ieee.org/document/7421012/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mateusz Daniol .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Daniol, M., Böhler, L., Keller, A., Sroka, R. (2019). Autoclave Sterilization Powered Medical IoT Sensor Systems. In: Hanus, R., Mazur, D., Kreischer, C. (eds) Methods and Techniques of Signal Processing in Physical Measurements. MSM 2018. Lecture Notes in Electrical Engineering, vol 548. Springer, Cham. https://doi.org/10.1007/978-3-030-11187-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11187-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11186-1

  • Online ISBN: 978-3-030-11187-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics