Analysis of the Spatial Distribution Pattern of Tourist Activity: An Application to the Volume of Travellers in Extremadura

Part of the Tourism, Hospitality & Event Management book series (THEM)


The techniques proposed by spatial econometrics are reaching greater dissemination nowadays, with special relevance in those sectors that are strongly related to their development in a specific geographic area. Generally, when a variable is affected by spatial autocorrelation, the latter needs to be treated using the techniques proposed to that end. The present study is focused on the exploratory analysis of a variable that is usually associated with tourism, i.e. the number of travellers, using the formal indices proposed by spatial statistics, which are Moran’s I and Getis & Ord G. The study analyses the distribution of this variable, concluding that it does not show a random pattern and that, therefore, subsequent confirmatory analyses or modelling of phenomena related to this variable will require the use of suitable techniques.


  1. Anselin, L. (1980). Estimation methods for spatial autoregressive structures. Regional science dissertation and monograph Series, Ithaca, NY.Google Scholar
  2. Anselin, L. (1988). Spatial econometrics: Methods and models. The Netherlands: Kluwer Academic Publisher.CrossRefGoogle Scholar
  3. Anselin, L. (1992). SpaceStat tutorial. A workbook for using SpaceStat in the analysis of spatial data (Technical Reports S-92-1). Santa Barbara: University of California; National Center for Geographic Information and Analysis.Google Scholar
  4. Anselin, L. (1993). The Moran scatterplot as an ESDA tool to assess local instability in spatial association. GISDATA Specialist Meeting on GIS and Spatial Analysis, Amsterdam, The Netherlands.Google Scholar
  5. Anselin, L. (1995a). SpaceStat version 1.80: Users’ guide. Regional Research Institute West Virginia University: Morgantown.Google Scholar
  6. Anselin, L. (1995b). Local indicators of spatial association (LISA). Geographical Analysis, 27(2), 93–115.Google Scholar
  7. Anselin, L. (1999). The future of spatial analysis in the social sciences. Geographic Information Sciences, 5(2), 67–76.Google Scholar
  8. Anselin, L. (2001). Spatial econometrics. In Baltagi (Ed.), A companion to theoretical econometrics (pp. 310–330). Oxford: Basil Blackwell.Google Scholar
  9. Anselin, L., & Florax, R. (1995). New directions in spatial econometrics: Introduction. In L. Anselin & R. J. G. M. Florax (Eds.), New directions in spatial econometrics (pp. 3–18). Springer.Google Scholar
  10. Anselin, L., & Rey, S. (1997). Introduction to the special issue on spatial econometrics. International Regional Science Review, 20, 1–8.CrossRefGoogle Scholar
  11. Arbia, G. (1989). Spatial data configuration in statistical analysis of regional economics and related problems. Dordrecht: Kluwer.CrossRefGoogle Scholar
  12. Barros, C. P., & Matías, A. (2007). Efficiency in a chain of small hotels with a stochastic production frontier model. In A. Matías, P. Nijkamp, & P. Neto (Eds.), Advances in modern tourism research: Economic perspectives (pp. 107–129). Heidelberg: Physica-Verlag.Google Scholar
  13. Bloommestein, H. (1983). Specification and estimation of spatial econometric models: A discussion of alternative strategies for spatial economic modelling. Regional Science and Urban Economics, 13, 130–251.CrossRefGoogle Scholar
  14. Button, K., & Kulkarni, R. (2001). Spatial and distance statistics of the trucking and warehousing industries using GIS tools. 41th Congress of the European Association of Regional Science (ERSA) Zagreb.Google Scholar
  15. Chasco, M. C. (2003). Econometría espacial aplicada a la predicción-extrapolación de datos microterritoriales. Madrid: Consejería de Economías e Innovación Tecnológica de la Comunidad de Madrid.Google Scholar
  16. Chasco, C., & Vicens, J. (2000). EU-membership impacts in the Spanish province income convergence: A spatial autocorrelation perspective. Oviedo: Anales de Economía aplicada XIV Reunión de ASEPELT.Google Scholar
  17. Cliff, A., & Ord, J. (1973). Spatial autocorrelation. London: Pion.Google Scholar
  18. Cliff, A., & Ord, J. (1981). Spatial processes, models and applications. London: Pion.Google Scholar
  19. Geary, R. (1954). The contiguity ratio and statistical mapping. The Incorporated Statistician, 5, 115–145.CrossRefGoogle Scholar
  20. Getis, A., & Ord, J. (1992). The analysis of spatial association by use of distance statistics. Geographical Analysis, 24, 189–206.CrossRefGoogle Scholar
  21. Kmenta, J. (1971). Elements of econometrics. New York: MacMillan.Google Scholar
  22. López, F. A., Palacios, M. A., & Ruiz, M. (2001). Modelos explicativos del desempleo en términos de localización: una aplicación a las provincias españolas. Anales de Economía Aplicada, XV Reunión de ASEPELT. Santiago de Compostela.Google Scholar
  23. Ma, T., Hong, T., & Zhang, H. (2015). Tourism spatial spillover effects and urban economic growth. Journal of Business Research, 68, 74–80.CrossRefGoogle Scholar
  24. Moran, P. (1948). The interpretation of statistical maps. Journal of the Royal Statistical Society, 10, 243–251.Google Scholar
  25. Moreno, R., & Vayá, E. (2000). Técnicas econométricas para el tratamiento de datos espaciales: la econometría espacial 44. Universitat de Barcelona.Google Scholar
  26. Moreno, R., & Vayá, E. (2004). Econometría Espacial: nuevas técnicas para el análisis regional. Una aplicación a las regiones europeas. Investigaciones regionales 1, 83–106.Google Scholar
  27. Openshaw, S. (1993). Some suggestions concerning the development of artificial intelligence tools for spatial modelling and analysis in GIS. In M. M. Fisher & P. Nijkamp (Eds.), Geographic information system, spatial modelling and policy evaluation (pp. 17–33). Berlin: Springer Verlag.CrossRefGoogle Scholar
  28. Ord, J. K., & Getis, A. (1995). Local spatial autocorrelation statistics: Distributional issues and an application. Geographical Analysis, 27(4), 286–306.CrossRefGoogle Scholar
  29. Paelinck, J. H. P., & Klaasen, L. H. (1979). Spatial econometrics. Saxon House.Google Scholar
  30. Pavlyuk, D. (2010). Multi-tier spatial stochastic frontier model for competition and cooperation of European airports. Transport and Telecommunication, 11(3), 57–66.Google Scholar
  31. Pavlyuk, D. (2013). Distinguishing between spatial heterogeneity and inefficiency: Spatial stochastic frontier analysis of European airports. Transport and Tecommunication, 14(1), 29–38.Google Scholar
  32. Sánchez, M. (2008). Análisis Espacial de Datos y Turismo: Nuevas Técnicas para el Análisis Turístico. Una aplicación al caso extremeño. Revistas empresariales. Segunda Época, 2, 48–66.Google Scholar
  33. Sánchez, J. M., Sánchez, M., & Rengifo, J. I. (2013). La evaluación del potencial para el desarrollo de turismo rural. Aplicación metodológica sobre la provincia de Cáceres. Geofocus, 13(1), 1–20.Google Scholar
  34. Sánchez, J. M., Sánchez, M., & Rengifo, J. I. (2018). Patrones de distribución de la oferta turística mediante técnicas geoestadísticas en Extremadura (2004–2014). Boletín de la Asociación de Geógrafos Españoles, 76, 276–302.Google Scholar
  35. Shoval, N., & Ahas, R. (2016). The use of tracking technologies in tourism research: The first decade. Tourism Geographies, 18(5), 587–606.CrossRefGoogle Scholar
  36. Student. (1914). The elimination of spurious correlation due to position in time or space. Biometrika, 10, 179–180.CrossRefGoogle Scholar
  37. Tiefelsdorf, M., & Boots, B. (1997). A note on the extremities of local Moran’s Ii and their impact on global Moran’s I. Geographical Analysis, 29(3), 249–257.Google Scholar
  38. Vayá, E., & Suriñach, J. (1996). Contrastes de autocorrelación espacial: una aplicación al ámbito de las provincias españolas. X Reunión ASEPELT, Albacete (Castilla la Mancha).Google Scholar
  39. Zhou, Y., Maumbe, K., Deng, J., & Selin, S. (2015). Resource-based destination competitiveness evaluation using a hybrid analytic hierarchy process (AHP): The case study of West Virginia. Tourism Management Perspectives, 15, 70–80.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Economics and Business StudiesUniversity of ExtremaduraBadajozSpain

Personalised recommendations