Skip to main content

Nitric Oxide and Hydrogen Peroxide: Signals in Fruit Ripening

  • Chapter
  • First Online:
Nitric Oxide and Hydrogen Peroxide Signaling in Higher Plants

Abstract

Nitric oxide (NO) and hydrogen peroxide (H2O2) have profound effects in growth and development processes in plant physiology. They act as signal molecules under normal conditions or biotic and abiotic stress situations. Fruit ripening is a highly coordinated process that needs the control of several biosynthetic pathways, including signal molecules such as NO and H2O2. On the other hand, enzymatic and nonenzymatic antioxidants act to maintain the equilibrium and to prevent oxidative stress. This forward look reviews the relationship between these two active species and their interplay with ethylene in climacteric and non-climacteric fruit ripening. Throughout we emphasize the influence of NO and H2O2 crosstalk coupled to the hormone control, chloroplast to chromoplast transition, and their implications in postharvest technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aharoni Y, Copel A, Fallik E (1994) The use of hydrogen peroxide to control postharvest decay on ‘Galia’ melons. Ann Appl Biol 125:189–193

    Article  Google Scholar 

  • Apostol I, Heinstein PE, Low PS (1989) Rapid stimulation of an oxidative burst during elicitation of cultured plant cells: role in defense and signal transduction. Plant Physiol 90:109–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Astier J, Gross I, Durner J (2018) Nitric oxide production in plants: an update. J Exp Bot 69:3401–3411

    Article  PubMed  Google Scholar 

  • Baker CJ, O’Neill NR, Keppler LD, Orlandi EW (1991) Early responses during plant-bacteria interactions in tobacco suspensions. Phytopathology 81:1504–1507

    Article  Google Scholar 

  • Bartoli CG, Casalongué CA, Simontacchi M, Marquez-Garcia B, Foyer CH (2013) Interactions between hormone and redox signalling pathways in the control of growth and cross tolerance to stress. Environ Exp Bot 94:73–88

    Article  CAS  Google Scholar 

  • Batzer JC, Gleason ML, Weldon B, Dixon PM, Nutter FWJ (2002) Evaluation of postharvest removal of sooty blotch and flyspeck on apples using sodium hypochlorite, hydrogen peroxide with peroxyacetic acid, and soap. Plant Dis 86:1325–1332

    Article  CAS  PubMed  Google Scholar 

  • Bayoumi YA (2008) Improvement of postharvest keeping quality of white pepper fruits (Capsicum annuum L.) by hydrogen peroxide treatment under storage conditions. Acta Biol Szeged 52:7–15

    Google Scholar 

  • Benavides MP, Gallego SM, Artuso FR, Checovich M, Galatro A (2016) The complexity of nitric oxide generation and function in plants. Biocell 40:1–5

    CAS  Google Scholar 

  • Bethke PC, Badger MR, Jones RL (2004) Apoplastic synthesis of nitric oxide by plant tissues. Plant Cell 16:332–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bodanapu R, Gupta SK, Basha PO, Sakthivel K, Yellamaraju Sreelakshmi S, Sharma R (2016) Nitric oxide overproduction in Tomato shr mutant shifts metabolic profiles and suppresses fruit growth and ripening. Front Plant Sci 7:1714

    Article  PubMed  PubMed Central  Google Scholar 

  • Bouvier F, Backhaus RA, Camara B (1998) Induction and control of chromoplast-specific carotenoid genes by oxidative stress. J Biol Chem 273:30651–30659

    Article  CAS  PubMed  Google Scholar 

  • Bouzayen M, Latché A, Nath P, Pech JC (2009) Mechanisms of fruit ripening. In: Pua EC, Davey MR (eds) Plant developmental biology—biotechnological perspectives, vol 1. Springer, Berlin

    Google Scholar 

  • Brennan T, Frenkel C (1977) Involvement of hydrogen peroxide in the regulation of senescence in pear. Plant Physiol 59:411–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brennan T, Rychter A, Frenkel C (1979) Activity of enzymes involved in the turnover of hydrogen peroxide during fruit senescence. Bot Gaz 140:384–388

    Article  CAS  Google Scholar 

  • Britton G (2008) Functions of intact carotenoids. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids. Birkhäuser, Basel, pp 189–212. Retrieved from http://link.springer.com/chapter/10.1007/978-3-7643-7499-0_10

    Chapter  Google Scholar 

  • Brummell DA (2006) Cell wall disassembly in ripening fruit. Funct Plant Biol 33:103–119

    Article  CAS  PubMed  Google Scholar 

  • Burg SP, Burg EA (1965) Relationship between ethylene production and ripening in bananas. Bot Gaz 126:200–204

    Article  CAS  Google Scholar 

  • Burg SP, Thimann KV (1959) The physiology of ethylene formation in apples. Proc Natl Acad Sci U S A 45:335–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camara B, Hugueney P, Bouvier F, Kuntz M, Monéger R (1995) Biochemistry and molecular biology of chromoplast development. Int Rev Cytol 163:175–247

    Article  CAS  PubMed  Google Scholar 

  • Camejo D, Martí MC, Román P, Ortíz A, Jiménez A (2010) Antioxidant system and protein pattern in peach fruits at two maturation stages. J Agric Food Chem 58:11140–11147

    Article  CAS  PubMed  Google Scholar 

  • Cara B, Giovannoni JJ (2008) Molecular biology of ethylene during tomato fruit development and maturation. Plant Sci 175:106–113

    Article  CAS  Google Scholar 

  • Carrari F, Fernie AR (2006) Metabolic regulation underlying tomato fruit development. J Exp Bot 57:1883–1897

    Article  CAS  PubMed  Google Scholar 

  • Cerioni L, Sepulveda M, Rubio-Ames Z, Volentini SI, Rodríguez-Montelongo L, Smilanick JL, Ramallo J, Rapisardaa VA (2013) Control of lemon postharvest diseases by low-toxicity salts combined with hydrogen peroxide and heat. Postharvest Biol Technol 33:72–80

    Google Scholar 

  • Chaki M, Álvarez de Morales P, Ruiz C, Begara-Morales JC, Barroso JB, Corpas FJ, Palma JM (2015) Ripening of pepper (Capsicum annuum) fruit is characterized by an enhancement of protein tyrosine nitration. Ann Bot 116:637–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chamizo-Ampudia A, Sanz-Luque E, Llamas A, Galván A, Fernández E (2017) Nitrate reductase regulates plant nitric oxide homeostasis. Trend Plant Sci 22:163–174

    Article  CAS  Google Scholar 

  • Chaudhary P, Jayaprakasha GK, Porat R, Bhimanagouda SP (2012) Degreening and postharvest storage influences ‘Star Ruby’ grapefruit (Citrus paradisi Macf.) bioactive compounds. Food Chem 135:1667–1675

    Article  CAS  PubMed  Google Scholar 

  • Cheng G, Yang E, Lu W, Jia Y, Jinag Y, Duan X (2009) Effect of nitric oxide on ethylene synthesis and softening of banana fruit slice during ripening. J Agric Food Chem 57:5799–5804

    Article  CAS  PubMed  Google Scholar 

  • Chervin C, El-Kereamy A, Roustan J, Latché A, Lamon J, Bouzayen M (2004) Ethylene seems required for the berry development and ripening in grape, a non-climacteric fruit. Plant Sci 167:1301–1305

    Article  CAS  Google Scholar 

  • Cocaliadis MF, Fernández-Muñoz R, Pons C, Orzaez D, Granell A (2014) Increasing tomato fruit quality by enhancing fruit chloroplast function. A double-edged sword? J Exp Bot 65:4589–4598

    Article  CAS  PubMed  Google Scholar 

  • Corpas FJ, Barroso JB (2017) Nitric oxide synthase-like activity in higher plants. Nitric Oxide 68:5–6

    Article  CAS  PubMed  Google Scholar 

  • Corpas FJ, Barroso JB, Carreras A, Valderrama R, Palma JM, León AM, Sandalio LM, del Río LA (2006) Constitutive arginine-dependent nitric oxide synthase activity in different organs of pea seedlings during plant development. Planta 224:246–254

    Article  CAS  PubMed  Google Scholar 

  • Corpas FJ, Freschi L, Rodríguez-Ruiz M, Mioto PT, González-Gordo S, Palma JM (2018) Nitro-oxidative metabolism during fruit ripening. J Exp Bot 69:3449–3463

    Article  PubMed  Google Scholar 

  • Corpas FJ, Palma JM (2018) Nitric oxide on/off in fruit ripening. Plant Biol 20:805–807

    Google Scholar 

  • del Río LA (2015) ROS and RNS in plant physiology: an overview. J Exp Bot 66:2827–2837

    Article  PubMed  CAS  Google Scholar 

  • del Río LA, Corpas FJ, Sandalio LM, Palma JM, Gómez M, Barroso JB (2002) Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes. J Exp Bot 53:1255–1272

    Article  PubMed  Google Scholar 

  • Eriksson O, Friis EM, LoÈfgren P (2000) Seed size, fruit size, and dispersal systems in angiosperms from the early cretaceous to the late tertiary. Am Nat 156:47–58

    Article  PubMed  Google Scholar 

  • Eum HL, Kim HB, Choi SB, Lee SK (2009) Regulation of ethylene biosynthesis by nitric oxide in tomato (Solanum lycopersicum L.) fruit harvested at different ripening stages. Eur Food Res Technol 228:331–338

    Article  CAS  Google Scholar 

  • Fallik E, Aharoni Y, Grinberg S, Copel A, Klein JD (1994) Postharvest hydrogen peroxide treatment inhibits decay in eggplant and sweet red pepper. Crop Prot 13:451–454

    Article  CAS  Google Scholar 

  • Fan B, Shen L, Liu K, Zhao D, Yu M, Sheng J (2008) Interaction between nitric oxide and hydrogen peroxide in postharvest tomato resistance response to Rhizopus nigricans. J Sci Food Agric 88:1238–1244

    Article  CAS  Google Scholar 

  • Fava J, Hodara K, Nieto A, Guerrero S, Alzamora SM, Castro MA (2011) Structure (micro, ultra, nano), color and mechanical properties of Vitis labrusca L. (grape berry) fruits treated by hydrogen peroxide, UV–C irradiation and ultrasound. Food Res Int 44:2938–2948

    Article  CAS  Google Scholar 

  • Flores FB, Sanchez-Bel P, Valdenegro M, Romojaro F, Martinez-Madrid MC, Egea MI (2008) Effects of a pretreatment with nitric oxide on peach (Prunus persica L.) storage at room temperature. Eur Food Res Technol 227:1599–1611

    Article  CAS  Google Scholar 

  • Foreman J, Demidchik V, Bothwell JHF, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JDG, Davies JM, Dolan L (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422:442–446

    Article  CAS  PubMed  Google Scholar 

  • Forney CF, Rij RE, Denis-Arrue R, Smilanick JL (1991) Vapor phase hydrogen peroxide inhibits postharvest decay of table grapes. Hort Sci 26:1512–1514

    CAS  Google Scholar 

  • Foyer CH, Noctor G (2009) Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid Redox Signal 11:861–905

    Article  CAS  PubMed  Google Scholar 

  • Fraser PD, Truesdale MR, Bird CR, Schuch W, Bramley PM (1994) Carotenoid biosynthesis during tomato fruit development (evidence for tissue-specific gene expression). Plant Physiol 105:405–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fröhlich A, Durner J (2011) The hunt for plant nitric oxide synthase (NOS): is one really needed? Plant Sci 181:401–404

    Article  PubMed  CAS  Google Scholar 

  • Fryer MJ (1992) The antioxidant effects of thylakoid vitamin E (α-tocopherol). Plant Cell Environ 15:381–392

    Article  CAS  Google Scholar 

  • Galvez-Valdivieso G, Mullineaux PM (2010) The role of reactive oxygen species in signalling from chloroplasts to the nucleus. Physiol Plant 138:430–439

    Article  CAS  PubMed  Google Scholar 

  • Gane R (1934) Production of ethylene by some ripening fruits. Nature 134:1008

    Article  CAS  Google Scholar 

  • Gao H, Zhang ZK, Chai HK, Cheng N, Yang Y, Wang DN, Yang T, Cao W (2016) Melatonin treatment delays postharvest senescence and regulates reactive oxygen species metabolism in peach fruit. Postharvest Biol Technol 118:103–110

    Article  CAS  Google Scholar 

  • Gechev TS, Van Breusegem F, Stone JM, Denev I, Laloi C (2006) Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. Bioessays 28:1091–1101

    Article  CAS  PubMed  Google Scholar 

  • Gergoff GEG, Alegre ML, Senn ME, Chaves AR, Simontacchi M, Bartoli CG (2017) Combination of nitric oxide and 1-MCP on postharvest life of the blueberry (Vaccinium spp.) fruit. Postharvest Biol Technol 33:72–80

    Article  CAS  Google Scholar 

  • Giovanoni JJ (2004) Genetic regulation of fruit development and ripening. Plant Cell 16:S170–S180

    Article  Google Scholar 

  • Godber BLJ, Doel JJ, Sapkota GP, Blake DR, Stevens CR, Eisenthal R, Harrison R (2000) Reduction of nitrite to nitric oxide catalyzed by xanthine oxide reductase. J Biol Chem 275:7757–7763

    Article  CAS  PubMed  Google Scholar 

  • Goff SA, Klee HJ (2006) Plant volatile compounds: sensory cues for health and nutritional value? Science 311:815–819

    Article  CAS  PubMed  Google Scholar 

  • Gómez-García M, Ochoa-Alejo N (2013) Biochemistry and molecular biology of carotenoid biosynthesis in Chili Peppers (Capsicum spp.). Int J Mol Sci 14:19025–19053

    Article  CAS  Google Scholar 

  • Goulao LF, Oliveira CM (2008) Cell wall modifications during fruit ripening: when a fruit is not the fruit. Trend Food Sci Technol 19:4–25

    Article  CAS  Google Scholar 

  • Guo Q, Wu B, Chen W, Zhang Y, Wang J, Li X (2014) Effects of nitric oxide treatment on the cell wall softening related enzymes and several hormones of papaya fruit during storage. Food Sci Technol Int 20:309–317

    Article  PubMed  CAS  Google Scholar 

  • Gupta KJ, Kaiser WM (2010) Production and scavenging of nitric oxide by barley root mitochondria. Plant Cell Physiol 51:576–584

    Article  CAS  PubMed  Google Scholar 

  • Gupta KJ, Stoimenova M, Kaiser WM (2005) In higher plants, only root mitochondria, but not leaf mitochondria reduce nitrite to NO, in vitro and in situ. J Exp Bot 56:2601–2609

    Article  CAS  PubMed  Google Scholar 

  • Gupta KJ, Fernie AR, Kaiser WM, van Dongen JT (2011) On the origins of nitric oxide. Trend Plant Sci 16:160–168

    Article  CAS  Google Scholar 

  • Hafez YM (2010) Control of Botrytis cinerea by the resistance inducers Benzothiadiazole (BTH) and Hydrogen peroxide on white Pepper fruits under postharvest storage. Acta Phytopathol Entomol Hung 45:13–29

    Google Scholar 

  • Herrera A, Rodrigo MJ, Gil J, Zacarías L (2007) Ethylene stimulates emission of terpenoids and aliphatic esters in citrus fruits. In: Ramina A, Chang C, Giovannoni J, Klee H, Perata P, Woltering E (eds) Advances in plant ethylene research. Springer, Dordrecht

    Google Scholar 

  • Hu M, Yang D, Huber DJ, Jiang Y, Li M, Gao Z, Zhang Z (2014) Reduction of postharvest anthracnose and enhancement of disease resistance in ripening mango fruit by nitric oxide treatment. Postharvest Biol Technol 97:115–122

    Article  CAS  Google Scholar 

  • Huan C, Jiang L, An X, Yu M, Xu Y, Ma R, Yu Z (2016) Potential role of reactive oxygen species and antioxidant genes in the regulation of peach fruit development and ripening. Plant Physiol Biochem 104:294–303

    Article  CAS  PubMed  Google Scholar 

  • Hung KT, Chang CJ, Kao CH (2002) Paraquat toxicity is reduced by nitric oxide in rice leaves. J Plant Physiol 159:159–166

    Article  CAS  Google Scholar 

  • Imahori Y, Kanetsune Y, Ueda Y, Chachin K (2000) Changes in hydrogen peroxide content and antioxidative enzyme activities during the maturation of sweet pepper (Capsicum annuum L) fruit. J Jpn Soc Hortic Sci 69:690–695

    Article  CAS  Google Scholar 

  • Jasid S, Simontacchi M, Bartoli CG, Puntarulo S (2006) Chloroplasts as a nitric oxide cellular source. Effect of reactive nitrogen species on chloroplastic lipids and proteins. Plant Physiol 142:1246–1255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jasid S, Galatro A, Villordo JJ, Puntarulo S, Simontacchi M (2009) Role of nitric oxide in soybean cotyledon senescence. Plant Sci 176:662–668

    Article  CAS  Google Scholar 

  • Jayasena V, Cameron I (2008) °Brix/acid as a predictor of consumer acceptability of Crimson Seedless table grapes. J Food Qual 31:736–750

    Article  Google Scholar 

  • Jeandroz S, Wipf D, Stuehr DJ, Lamattina L, Melkonian M, Tian Z, Zhu Y, Carpenter EJ, Wong GKS, Wendehenne D (2016) Occurrence, structure, and evolution of nitric oxide synthase-like proteins in the plant kingdom. Sci Signal 9:re2

    Article  PubMed  CAS  Google Scholar 

  • Jiménez A, Creissen G, Kular B, Firmin J, Robinson S, Verhoeyen M, Mullineaux PM (2002) Changes in oxidative processes and components of the antioxidant system during tomato fruit ripening. Planta 214:751–758

    Article  PubMed  CAS  Google Scholar 

  • Kang R, Zhang L, Jiang L, Yu M, Ma R, Yu Z (2016) Effect of postharvest nitric oxide treatment on the proteome of peach fruit during ripening. Postharvest Biol Technol 112:277–289

    Article  CAS  Google Scholar 

  • Kidd F, West C (1925) Respiratory activity and duration of life of apples gathered at different stages of development and subsequently maintained at a constant temperature. Plant Physiol 20:467–504

    Article  Google Scholar 

  • Kitijona L, Saran S, Roy SK, Kader AA (2011) Postharvest technology for developing countries: challenges and opportunities in research, outreach and advocacy. J Sci Food Agric 91:597–603

    Article  CAS  Google Scholar 

  • Klee HJ (2004) Ethylene signal transduction. Moving beyond Arabidopsis. Plant Physiol 135:660–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klee HJ (2013) Purple tomatoes: longer lasting, less disease, and better for you. Curr Biol 23:R520–R521

    Article  CAS  PubMed  Google Scholar 

  • Knapp S (2002) Tobacco to tomatoes: a phylogenetic perspective on fruit diversity in the Solanaceae. J Exp Bot 53:2001–2022

    Article  CAS  PubMed  Google Scholar 

  • Kopyra M, Gwóźdź EA (2003) Nitric oxide stimulates seed germination and counteracts the inhibitory effect of heavy metals and salinity on root growth of Lupinus luteus. Plant Physiol Biochem 41:1011–1017

    Article  CAS  Google Scholar 

  • Kumar R, Khurana A, Sharma AK (2014) Role of plant hormones and their interplay in development and ripening of fleshy fruits. J Exp Bot 65:4561–4575

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Irfan M, Ghosh S, Chakraborty N, Chakraborty S, Datta A (2015) Fruit ripening mutants reveal cell metabolism and redox state during ripening. Protoplasma 253:581–594

    Article  PubMed  CAS  Google Scholar 

  • Lai T, Wang Y, Li B, Qin G, Tian S (2011) Defense responses of tomato fruit to exogenous nitric oxide during postharvest storage. Postharvest Biol Technol 62:127–132

    Article  CAS  Google Scholar 

  • Lazar EE, Wills RBH, Ho BT, Harris AM, Spohr LJ (2008) Antifungal effect of gaseous nitric oxide on mycelium growth, sporulation and spore germination of the postharvest horticulture pathogens, Aspergillus niger, Monilinia fructicola and Penicillium italicum. Lett Appl Microbiol 246:688–692

    Article  CAS  Google Scholar 

  • Lelievre JM, Latche A, Jones B, Bouzayen M, Pech JC (1997) Ethylene and fruit ripening. Physiol Planta 101:727–739

    Article  CAS  Google Scholar 

  • Leng P, Yuan B, Guo Y (2014) The role of abscisic acid in fruit ripening and responses to abiotic stress. J Exp Bot 65:4577–4588

    Article  CAS  PubMed  Google Scholar 

  • Leshem YY, Haramaty E (1996) The characterization and contrasting effects of the nitric oxide free radical in vegetative stress and senescence of Pisum sativum Linn. foliage. J Plant Physiol 148:258–263

    Article  CAS  Google Scholar 

  • Leshem YY, Wills R (1998) Harnessing senescence delaying gases nitric oxide and nitrous oxide: a novel approach to postharvest control of fresh horticultural produce. Biol Plant 41:1–10

    Article  CAS  Google Scholar 

  • Leshem YY, Wills RRH, Ku VVV (1998) Evidence for the function of the free radical gas—nitric oxide (NO) as an endogenous maturation and senescence regulating factor in higher plants. Plant Physiol Biochem 36:825–833

    Google Scholar 

  • Li G, Zhu S, Wu W, Zhang C, Peng Y, Wang Q, Shi J (2017) Exogenous nitric oxide induces disease resistance against Monilinia fructicola through activating the phenylpropanoid pathway in peach fruit. J Sci Food Agric 97:3030–3038

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Golding JB, Arcot J, Wills RBH (2018) Continuous exposure to ethylene in the storage environment adversely affects ‘Afourer’ mandarin fruit quality. Food Chem 242:585–590

    Article  CAS  PubMed  Google Scholar 

  • Liedvogel B, Sitte P, Falk H (1976) Chromoplasts in the daffodil: fine structure and chemistry. Cytobiologie 12:155–174

    CAS  Google Scholar 

  • Lin Y, Lin H, Zhang S, Chen Y, Chen M, Lin Y (2014) The role of active oxygen metabolism in hydrogen peroxide-induced pericarp browning of harvested longan fruit. Postharvest Biol Technol 96:42–48

    Article  CAS  Google Scholar 

  • Liu MC, Song WH, Zhu SH, Zhou J (2007) Effects of nitric oxide and exogenous ethylene treatments on ethylene biosynthesis in Feicheng Peach. Agric Sci China 6:290–295

    Article  CAS  Google Scholar 

  • Liu M, Pirrello J, Chervin C, Roustan JP, Bouzayen M (2015) Ethylene control in fruit ripening: revisiting the complex network of transcriptional regulation. Plant Physiol 169:2380–2390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manjunatha G, Lokesh V, Neelwarne B (2010) Nitric oxide in fruit ripening: trends and opportunities. Biotechnol Adv 28:489–499

    Article  CAS  PubMed  Google Scholar 

  • Martí MC, Camejo D, Olmos E, Sandalio LM, Fernández-García N, Jiménez A, Sevilla F (2008) Characterization and changes in the antioxidant system of chloroplasts and chromoplasts isolated from green and mature pepper fruits. Plant Biol 11:613–624

    Article  CAS  Google Scholar 

  • Martí MC, Camejo D, Vallejo F, Romojaro F, Bacarizo S, Palma JM, Sevilla F, Jiménez A (2011) Influence of fruit ripening stage and harvest period on the antioxidant content of sweet pepper cultivars. Plant Foods Hum Nutr 66:416–423

    Article  PubMed  CAS  Google Scholar 

  • Mateos RM, Jiménez A, Román P, Romojaro F, Bacarizo S, Leterrier M, Gómez M, Sevilla F, del Río LA, Corpas FJ, Palma JM (2013) Antioxidant systems from pepper (Capsicum annuum L.): involvement in the response to temperature changes in ripe fruits. Int J Mol Sci 14:9556–9580

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mayouni L, Tietel Z, Patil BS, Porat R (2011) Does ethylene degreening affect internal quality of citrus fruit? Postharvest Biol Technol 62:50–58

    Article  CAS  Google Scholar 

  • Merchante C, Vallarino JG, Osorio S, Aragüez I, Villarreal N, Ariza MT, Martínez GA, Medina-Escobar N, Civello MP, Fernie AR, Botella MA, Valpuesta V (2013) Ethylene is involved in strawberry fruit ripening in an organ-specific manner. J Exp Bot 64:4421–4439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trend Plant Sci 7:405–410

    Article  CAS  Google Scholar 

  • Moeder W, Barry CS, Tauriainen AA, Betz C, Tuomainen J, Utriainen M, Grierson D, Sandermann H, Langebartels C, Kangasjärvi J (2002) Ethylene synthesis regulated by biphasic induction of 1-aminocyclopropane-1-carboxylic acid synthase and 1-aminocyclopropane-1-carboxylic acid oxidase genes is required for hydrogen peroxide accumulation and cell death in ozone-exposed tomato. Plant Physiol 130:1918–1926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohamed MAAT, Abd El-khalek AF, Elmehrat HG, Mahmoud GA (2016) Nitric oxide, oxalic acid and hydrogen peroxide treatments to reduce decay and maintain postharvest quality of ‘Valencia’ orange fruits during cold storage. Egypt J Hortic 43:137–161

    Article  Google Scholar 

  • Moreau M, Lindermayr C, Durner J, Klessig DF (2010) NO synthesis and signaling in plants—where do we stand? Physiol Plant 138:372–383

    Article  CAS  PubMed  Google Scholar 

  • Mur LAJ, Mandon J, Persijn S, Cristescu SM, Moshkov IE, Novikova GV, Hall MA, Harren FJM, Hebelstrup KH, Gupta KJ (2013) Nitric oxide in plants: an assessment of the current state of knowledge. AoB Plant 5:pls052

    Article  CAS  Google Scholar 

  • Murshed R, Lopez-Lauri F, Sallanon H (2014) Effect of salt stress on tomato fruit antioxidant systems depends on fruit development stage. Physiol Mol Biol Plant 20:15–29

    Article  CAS  Google Scholar 

  • Namitha KK, Negi PS (2010) Chemistry and biotechnology of carotenoids. Crit Rev Food Sci Nutr 50:728–760

    Article  CAS  PubMed  Google Scholar 

  • Navrot N, Rouhier N, Gelhaye E, Jacquot JP (2007) Reactive oxygen species generation and antioxidant systems in plant mitochondria. Physiol Plant 129:185–195

    Article  CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Ann Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  CAS  Google Scholar 

  • Noctor G, Reichheld JP, Foyer CH (2018) ROS-related redox regulation and signaling in plants. Semin Cell Dev Biol 80:3–12

    Article  CAS  PubMed  Google Scholar 

  • Palma JM, Corpas FJ, del Río LA (2011) Proteomics as an approach to the understanding of the molecular physiology of fruit development and ripening. J Proteom 74:1230–1243

    Article  CAS  Google Scholar 

  • Palma JM, Sevilla F, Jiménez A, del Río LA, Corpas FJ, Álvarez de Morales P, Camejo DM (2015) Physiology of pepper fruits and the metabolism of antioxidants: chloroplasts, mitochondria and peroxisomes. Ann Bot 116:627–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey VP, Singh S, Jaiswal N, Awasthi M, Pandey B, Dwivedi UN (2013) Papaya fruit ripening: ROS metabolism, gene cloning, characterization and molecular docking of peroxidase. J Mol Catal B Enzym 98:98–105

    Article  CAS  Google Scholar 

  • Parra-Lobato MC, Gómez-Jiménez MC (2011) Polyamine-induced modulation of genes involved in ethylene biosynthesis and signalling pathways and nitric oxide production during olive mature fruit abscission. J Exp Bot 62:4447–4465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petrov VD, Van Breusegem F (2012) Hydrogen peroxide—a central hub for information flowing plant cells. AoB Plants pls:014

    Google Scholar 

  • Pirrello J, Regad F, Latché A, Pech JC, Bouzayen M (2009) Regulation of tomato fruit ripening. CAB Rev 4:1–14

    Article  CAS  Google Scholar 

  • Prabha TN, Bhagyalakshmi N (1998) Carbohydrate metabolism in ripening banana fruit. Phytochemistry 48:915–919

    Article  CAS  Google Scholar 

  • Pristijono P, Wills RBH, Golding JB (2008) Use of the nitric oxide donor compound, diethylenetriamine-nitric oxide (DETANO), as an inhibitor of browning in apple slices. J Hortic Sci Biotechnol 83:555–558

    Article  CAS  Google Scholar 

  • Procházková D, Wilhelmová N (2011) Nitric oxide, reactive nitrogen species and associated enzymes during plant senescence. Nitric Oxide 24:61–65

    Article  PubMed  CAS  Google Scholar 

  • Racchi M (2013) Antioxidant defenses in plants with attention to Prunus and Citrus spp. Antioxidants 2:340–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rockel P, Strube F, Rockel A, Wildt J, Kaiser WM (2002) Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro. J Exp Bot 53:103–110

    Article  CAS  PubMed  Google Scholar 

  • Rodrigo MJ, Zacarias L (2007) Effect of postharvest ethylene treatment on carotenoid accumulation and the expression of carotenoid biosynthetic genes in the flavedo of orange (Citrus sinensis L. Osbeck) fruit. Postharvest Biol Technol 43:14–22

    Article  CAS  Google Scholar 

  • Rodríguez FI, Esch JJ, Hall AE, Binder BM, Schaller GE, Bleecker AB (1999) A cooper cofactor for the ethylene receptor ETR1 from Arabidopsis. Science 283:996–998

    Article  PubMed  Google Scholar 

  • Rodríguez-Ruiz M, Mioto P, Palma JM, Corpas FJ (2017a) S-nitrosoglutathione reductase (GSNOR) activity is down-regulated during pepper (Capsicum annuum L.) fruit ripening. Nitric Oxide 68:51–55

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez-Ruiz M, Mateos RM, Codesido V, Corpas FJ, Palma JM (2017b) Characterization of the galactono-1,4-lactone dehydrogenase from pepper fruits and its modulation in the ascorbate biosynthesis. Role of nitric oxide. Redox Biol 12:171–181

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ronen G, Carmel-Goren L, Zamir D, Hirscheberg J (2000) An alternative pathway to β-carotene formation in plant chromoplasts discovered by map-based cloning of Beta and old-gold color mutations in tomato. Proc Natl Acad Sci U S A 97:11102–11107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rümer S, Gupta KJ, Kaiser WM (2009) Plant cells oxidize hydroxylamines to NO. J Exp Bot 60:2065–2072

    Article  PubMed  PubMed Central  Google Scholar 

  • Sagi M, Davydov O, Orazova S, Yesbergenova Z, Ophir R, Stratmann JW, Fluhr R (2004) Plant respiratory burst oxidase homologs impinge on would responsiveness and development in Lycopersicon esculentum. Plant Cell 16:616–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santolini J, André F, Jeandroz S, Wendehenne D (2017) Nitric oxide synthase in plants: where do we stand? Nitric Oxide 63:30–38

    Article  CAS  PubMed  Google Scholar 

  • Sapers GM, Sites JE (2003) Efficacy of 1% hydrogen peroxide wash in decontaminating apples and Cantaloupe melons. J Food Sci 68:1793–1797

    Article  CAS  Google Scholar 

  • Shimokawa K, Shimada S, Yaeo K (1978) Ethylene-enhanced chlorophyllase activity during degreening of Citrus unshiu Marc. Sci Hortic 8:129–135

    Article  CAS  Google Scholar 

  • Simontacchi M, Jasid S, Puntarulo S (2004) Nitric oxide generation during early germination of sorghum seeds. Plant Sci 167:839–847

    Article  CAS  Google Scholar 

  • Simontacchi M, Galatro A, Ramos-Artuso F, Santa-María GE (2015) Plant survival in a changing environment: the role of nitric oxide in plant responses to abiotic stress. Front Plant Sci 6:977

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh SP, Singh Z, Swinny EE (2009) Postharvest nitric oxide fumigation delays fruit ripening and alleviates chilling injury during cold storage of Japanese plums (Prunus salicina Lindell). Postharvest Biol Technol 53:101–108

    Article  CAS  Google Scholar 

  • Sisler EC, Serek M (1997) Inhibitors of ethylene responses in plants at the receptor level: recent developments. Physiol Plant 100:577–582

    Article  CAS  Google Scholar 

  • Song W, Derito CM, Liu MK, He X, Dong M, Liu RH (2010) Cellular antioxidant activity of common vegetables. J Agric Food Chem 58:6621–6629

    Article  CAS  PubMed  Google Scholar 

  • Stöhr C, Strube F, Marx G, Ullrich WR, Rockel P (2001) A plasma membrane-bound enzyme of tobacco roots catalyses the formation of nitric oxide from nitrite. Planta 212:835–841

    Article  PubMed  Google Scholar 

  • Stuehr DJ (1999) Mammalian nitric oxide synthases. Biochim Biophys Acta 1411:217–230

    Article  CAS  PubMed  Google Scholar 

  • Tesniere C, Pradal M, El-Kereamy A, Torregrosa L, Chatelet P, Roustan JP, Chervin C (2004) Involvement of ethylene signalling in a non-climacteric fruit: new elements regarding the regulation of ADH expression in grapevine. J Exp Bot 55:2235–2240

    Article  CAS  PubMed  Google Scholar 

  • Tian S, Qin S, Li B (2013) Reactive oxygen species involved in regulating fruit senescence and fungal pathogenicity. Plant Mol Biol 82:593–602

    Article  CAS  PubMed  Google Scholar 

  • Tohge T, Alseekh S, Fernie AR (2014) On the regulation and function of secondary metabolism during fruit development and ripening. J Exp Bot 65:4599–4611

    Article  CAS  PubMed  Google Scholar 

  • Torres R, Valentines MC, Usall J, Vinas I, Larrigaudiere C (2003) Possible involvement of hydrogen peroxide in the development of resistance mechanisms in ‘Golden Delicious’ apple fruit. Postharvest Biol Technol 27:235–242

    Article  CAS  Google Scholar 

  • Tucker GA, Grierson D (1987) Fruit ripening. In: Davies DD (ed) Biochemistry of plants: a comprehensive treatise, vol 12. Academic, London, pp 265–318

    Google Scholar 

  • Tun NN, Santa-Catarina C, Begum T, Silveira V, Handro W, Segal Floh EI, Scherer GFE (2006) Polyamines induce rapid biosynthesis of nitric oxide (NO) in Arabidopsis thaliana seedlings. Plant Cell Physiol 47:346–354

    Article  CAS  PubMed  Google Scholar 

  • Vera-Estrella R, Blumwald E, Higgins VG (1992) Effect of specific elicitors of Cladosporium fulvum on tomato suspension cells. Plant Physiol 99:1208–1215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang B, Wang J, Feng X, Lin L, Zhao Y, Jiang W (2009) Effects of 1-MCP and exogenous ethylene on fruit ripening and antioxidants in stored mango. Plant Growth Regul 57:185–192

    Article  CAS  Google Scholar 

  • Wang BL, Tang XY, Cheng LY, Zhang AZ, Zhang WH, Zhang FS, Liu JQ, Cao Y, Allan DL, Vance CP, Shen JB (2010) Nitric oxide is involved in phosphorus deficiency-induced cluster-root development and citrate exudation in white lupin. New Phytol 187:1112–1123

    Article  CAS  PubMed  Google Scholar 

  • Wills RBH, Ku VVV, Leshem YY (2000) Fumigation with nitric oxide to extend the postharvest life of strawberries. Postharvest Biol Technol 18:75–79

    Article  CAS  Google Scholar 

  • Wills RB, Soegiarto L, Bowyer MC (2007) Use of a solid mixture containing diethylenetriamine/nitric oxide (DETANO) to liberate nitric oxide gas in the presence of horticultural produce to extend postharvest life. Nitric Oxide 17:44–49

    Article  CAS  PubMed  Google Scholar 

  • Wing SL, Boucher LD (1998) Ecological aspects of the Cretaceous flowering plant radiation. Annu Rev Earth Planet Sci 26:379–421

    Article  CAS  Google Scholar 

  • Wu F, Yang H, Chang Y, Cheng J, Bai S, Yin J (2012) Effects of nitric oxide on reactive oxygen species and antioxidant capacity in Chinese Bayberry during storage. Sci Hortic 135:106–111

    Article  CAS  Google Scholar 

  • Wu B, Guo Q, Li Q, Ha Y, Li X, Chena W (2014) Impact of postharvest nitric oxide treatment on antioxidant enzymes and related genes in banana fruit in response to chilling tolerance. Postharvest Biol Technol 92:157–163

    Article  CAS  Google Scholar 

  • Yamasaki H, Cohen MF (2006) NO signal at the crossroads: polyamine-induced nitric oxide synthesis in plants? Trend Plant Sci 11:522–524

    Article  CAS  Google Scholar 

  • Yamasaki H, Sakihama Y (2000) Simultaneous production of nitric oxide and peroxynitrite by plant nitrate reductase: in vitro evidence for the NR-dependent formation of active nitrogen species. FEBS Lett 468:89–92

    Article  CAS  PubMed  Google Scholar 

  • Yang SF (1987) The role of ethylene and ethylene synthesis in fruit ripening. In: Thompson W, Nothnagel E, Huffaker R (eds) Plant senescence: its biochemistry and physiology. The American Society of Plant Physiologists, Rockville, MD, pp 156–165

    Google Scholar 

  • Yang SF, Hoffman NE (1984) Ethylene biosynthesis and its regulation in higher plants. Ann Rev Plant Physiol 35:155–189

    Article  CAS  Google Scholar 

  • Yang H, Wu F, Cheng J (2011) Reduced chilling injury in cucumber by nitric oxide and the antioxidant response. Food Chem 127:1237–1242

    Article  CAS  PubMed  Google Scholar 

  • Yanishlieva NV, Marinova E, Pokorny J (2006) Natural antioxidants from herbs and spices. Eur J Lipid Sci Technol 108:776–793

    Article  CAS  Google Scholar 

  • Yokotani N, Nakano R, Imanishi S, Nagata M, Inaba A, Kubo Y (2009) Ripening-associated ethylene biosynthesis in tomato fruit is auto catalytically and developmentally regulated. J Exp Bot 60:3433–3442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaharah SS, Zora S (2011) Postharvest nitric oxide fumigation alleviates chilling injury, delays fruit ripening and maintains fruit quality in cold-storage ‘Kensington Pride’ mango. Postharvest Biol Technol 60:202–210

    Article  CAS  Google Scholar 

  • Zhang LL, Zhu SH, Chen CB, Zhou J (2011) Metabolism of endogenous nitric oxide during growth and development of apple fruit. Sci Hortic 127:500–506

    Article  CAS  Google Scholar 

  • Zheng Y, Shen L, Yu M, Fan B, Zhao D, Liu L, Sheng J (2011) Nitric oxide synthase as a postharvest response in pathogen resistance of tomato fruit. Postharvest Biol Technol 60:38–46

    Article  CAS  Google Scholar 

  • Zhou Y, Li S, Zeng K (2016) Exogenous nitric oxide-induced postharvest disease resistance in citrus fruit to Colletotrichum gloeosporioides. J Sci Food Agric 96:505–512

    Article  CAS  PubMed  Google Scholar 

  • Zhu S, Zhou J (2007) Effect of nitric oxide on ethylene production in strawberry fruit during storage. Food Chem 100:1517–1522

    Article  CAS  Google Scholar 

  • Zhu S, Liu M, Zhou J (2006) Inhibition by nitric oxide of ethylene biosynthesis and lipoxygenase activity in peach fruit during storage. Postharvest Biol Technol 42:41–48

    Article  CAS  Google Scholar 

  • Zhu S, Sun L, Zhou J (2010) Effects of different nitric oxide application on quality of kiwifruit during 20°C storage. Int J Food Sci Technol 45:245–251

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Our work is supported by the National Scientific and Technical Research Council (CONICET) (Argentina) and the National Agency of Science al Technology Promotion (ANPCyT PICT 2015-0103) (Argentina). CS is a fellowship student of the ANPCyT, and AG, CGB, and GEGG are carrier researchers of CONICET. The authors also would like to thank the editors for considering our chapter as part of this book.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Steelheart, C., Galatro, A., Bartoli, C.G., Gergoff Grozeff, G.E. (2019). Nitric Oxide and Hydrogen Peroxide: Signals in Fruit Ripening. In: Gupta, D., Palma, J., Corpas, F. (eds) Nitric Oxide and Hydrogen Peroxide Signaling in Higher Plants. Springer, Cham. https://doi.org/10.1007/978-3-030-11129-8_9

Download citation

Publish with us

Policies and ethics